Как пишется олово?
Хотите спросить как пишется олово? Олово в химии обозначается Sn. Латинское название «stannum» означает «прочность».
Применение олова
Имеет серебристо-белый цвет, но на воздухе постепенно окисляется и темнеет. Олово используется очень широко:
- При сгорании образуется белый порошок.Его используют, как средство для полировки поверхностей.
- Большая часть добываемого в мире олова идет на изготовление консервных банок. В России около ста промышленных установок для переработки олова. В переработку идут отходы белой жести, ее обрабатывают хлором. Олово с ним соединяется легко.
- Многие из оловянных соединений токсичны, поэтому они входят в состав инсектицидов и противогельминтных средств. Олово стимулирует рост и развитие растений. В тех концентрациях, в которых оно содержится в данных средствах, олово неопасно для человека.
- Оксид олова используют при получении рубинового стекла.
- Двуокись олова используется, как абразив.
- Дисульфид олова используют для имитации позолоты.
- Из смеси солей олова изготовляют краситель для шерсти.
- Олово известно человеку с древности, как и золото, серебро, медь и железо. Посуду изготовляли в древности из чистого олова, как и украшения.
- Тетрахлорид олова используют, как растворитель фосфора и йода.
- Олово – основной компонент для получения титана. Титан – отличный биосовместимый материал. Из него изготовляются протезы, медицинские спицы, брекеты для коррекции прикуса, коронки.
- Тонкая оловянная фольга используется для электроконденсаторов.
- Припои олова нетоксичны, поэтому могут служить, как припой для посуды. Припои используют для прочного соединения металлических деталей.
- Конечно, из олова также изготовляют произведения искусства. В том же Эрмитаже вы можете полюбоваться на эту красоту и даже попробовать изготовить фигурки самостоятельно. Это не очень сложно, но требует усердия, терпения и художественного вкуса. Без таланта тут не обойтись.
Олово в природе встречается редко, в составе оловянной руды чистого олова – не более 1%. Современное получение олова трудоемко.
Несколько интересных фактов об олове
Древние римляне употребляли вино, которое изготовлялось в оловянных котлах. Металл проникал в вино и понемногу отравлял римлян. Конечно, никто тогда не занимался химией, поэтому этот феномен древние никак не могли объяснить.
В жилых помещениях, расположенных ближе, чем за километр от автострады, в воздухе фиксируют избыток олова. Олово создает условия для появления злокачественных опухолей в организме.
Источник статьи: http://olovok.com/kak-pishetsya-olovo/
Олово
(молярная масса)
(первый электрон)
Олово (химический символ — Sn; лат. Stannum ) — элемент 14-й группы периодической системы химических элементов (по устаревшей классификации — элемент главной подгруппы IV группы), пятого периода, с атомным номером 50. Относится к группе лёгких металлов. При нормальных условиях простое вещество олово — пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Известны четыре аллотропические модификации олова: ниже +13,2 °C устойчиво α -олово (серое олово) с кубической решёткой типа алмаза, выше +13,2 °C устойчиво β -олово (белое олово) с тетрагональной кристаллической решёткой. При высоких давлениях обнаружены также γ -олово и σ -олово.
Содержание
- 1 История
- 2 Происхождение названия
- 3 Физические свойства
- 3.1 Серое и белое олово
- 3.2 Изотопы
- 4 Химические свойства
- 4.1 Металлическое олово
- 4.2 Олово (II)
- 4.3 Олово (IV)
- 5 Нахождение в природе
- 5.1 Месторождения
- 5.2 Распространённость в природе
- 5.3 Формы нахождения
- 5.3.1 Твёрдая фаза. Минералы
- 5.3.2 Собственно минеральные формы
- 5.3.2.1 Самородные элементы, сплавы и интерметаллические соединения
- 5.3.2.2 Окисные соединения олова
- 5.3.2.2.1 Касситерит
- 5.3.2.2.2 Гидроокисные соединения
- 5.3.2.2.3 Силикаты
- 5.3.2.2.4 Шпинелиды
- 5.3.2.3 Сульфидные соединения олова
- 5.3.2.3.1 Станнин
- 5.3.3 Коллоидная форма
- 5.3.4 Формы нахождения олова в жидкой фазе
- 5.4 Промышленные типы месторождений олова
- 6 Производство
- 7 Применение
- 8 Физиологическое действие
- 9 Галерея изображений
История
Олово было известно человеку уже в IV тысячелетии до н. э. Этот металл был малодоступен и дорог, поэтому изделия из него редко встречаются среди римских и греческих древностей. Об олове есть упоминания в Библии, Четвёртой Книге Моисея. Олово является (наряду с медью) одним из компонентов оловяннистой бронзы, изобретённой в конце или середине III тысячелетия до н. э. Поскольку бронза являлась наиболее прочным из известных в то время металлов и сплавов, олово было «стратегическим металлом» в течение всего «бронзового века», более 2000 лет (очень приблизительно: XXXV—XI века до н. э.).
Чистое олово получено не ранее XII в., о нем упоминает в своих трудах Р. Бэкон. До этого олово всегда содержало переменное количество свинца. Хлорид SnCl4 впервые получил А. Либавий в 1597 г. Аллотропию олова и явление «оловянной чумы» объяснил Э. Кохен в 1899 г.
Происхождение названия
Латинское название stannum , связанное с санскритским словом, означающим «стойкий, прочный», первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67 % олова; к IV веку н. э. этим словом стали называть собственно олово.
Слово олово — общеславянское, однако в некоторых славянских языках такое же или однокоренное слово (польск. ołów , чеш. olovo , серб. олово и др.) используется для обозначения другого, внешне похожего металла — свинца. Слово олово имеет соответствия в балтийских языках (ср. лит. alavas, alvas , латыш. alva — «олово», прусск. alwis — «свинец»). Оно является суффиксальным образованием от корня ol- (ср. древневерхненемецкое elo — «жёлтый», лат. albus — «белый» и пр.), так что металл назван по цвету.
Физические свойства
Механические и технологические свойства:
модуль упругости 55 ГПа при 0 °С и 48 ГПа при 100 °С; модуль сдвига 16,8—8,1 ГПа; временное сопротивление разрыву — 20 МПа; относительное удлинение — 40 %; твёрдость по Бринеллю — 152 МПа (белое олово), 62 МПа (серое олово); температура литья — 260—300 °С.
При температуре немного выше 170 °С олово становится хрупким.
Стандартный электродный потенциал E °Sn 2+ /Sn равен −0,136 В, а E пары °Sn 4+ /Sn 2+ около 0,151 В.
Серое и белое олово
Простое вещество олово полиморфно. В обычных условиях оно существует в виде β -модификации (белое олово), устойчивой выше +13,2 °C. Белое олово — серебристо-белый, мягкий, пластичный металл, образующий кристаллы тетрагональной сингонии, пространственная группа I4/amd, параметры ячейки a = 0,58197 нм , c = 0,3175 нм , Z = 4 . Координационное окружение каждого атома олова в нём — октаэдр. Плотность β -Sn равна 7,228 г/см 3 . При сгибании прутков олова слышен характерный хруст от взаимного трения кристаллитов.
При охлаждении белое олово переходит в α -модификацию (серое олово). Серое олово образует кристаллы кубической сингонии, пространственная группа Fd3m, параметры ячейки a = 0,646 нм , Z = 8 со структурой типа алмаза. В сером олове координационный полиэдр каждого атома — тетраэдр, координационное число 4. Фазовый переход β -Sn в α -Sn сопровождается увеличением удельного объёма на 25,6 % (плотность α -Sn составляет 5,75 г/см 3 ), что приводит к рассыпанию олова в порошок. Энтальпия перехода α → β ΔH = 2,08 кДж/моль . Одна модификация переходит в другую тем быстрее, чем ниже температура окружающей среды. При −33 °C скорость превращений становится максимальной. Тем не менее белое олово можно переохладить до гелиевых температур. Белое олово превращается в серое также под действием ионизирующего излучения.
Из-за сильного различия структур двух модификаций олова разнятся и их электрофизические свойства. Так, β -Sn — металл, а α -Sn относится к числу полупроводников. Ниже 3,72 К α -Sn переходит в сверхпроводящее состояние. Атомы в кристаллической решётке белого олова находятся в электронном s 2 p 2 -состоянии. Серое олово — ковалентный кристалл со структурой алмаза и электронным sp 3 -состоянием. Белое олово слабо парамагнитно, атомная магнитная восприимчивость χ = +4,5·10 −6 (при 303 К ), при температуре плавления становится диамагнитным, χ = −5,1·10 −6 . Серое олово диамагнитно, χ = −3,7·10 −5 (при 293 К ).
Соприкосновение серого олова и белого приводит к «заражению» последнего, то есть к ускорению фазового перехода по сравнению со спонтанным процессом из-за появления зародышей новой кристаллической фазы. Совокупность этих явлений называется «оловянной чумой». Нынешнее название этому процессу в 1911 году дал Г. Коэн. Начало научного изучения этого фазового перехода было положено в 1870 году работами петербургского учёного, академика Ю. Фрицше. Много ценных наблюдений и мыслей об этом процессе высказано Д. И. Менделеевым в его «Основах химии».
Одним из средств предотвращения «оловянной чумы» является добавление в олово стабилизатора, например висмута. С другой стороны, ускоряет процесс перехода белого олова в серое при не очень низких температурах катализатор хлорстаннат аммония (NH4)2SnCl6.
«Оловянная чума» — одна из причин гибели экспедиции Скотта к Южному полюсу в 1912 году. Она осталась без горючего из-за того, что топливо просочилось из запаянных оловом баков, поражённых «оловянной чумой».
Некоторые историки указывают на «оловянную чуму» как на одно из обстоятельств поражения армии Наполеона в России в 1812 году — сильные морозы привели к превращению оловянных пуговиц на мундирах солдат в порошок.
«Оловянная чума» погубила многие коллекции оловянных солдатиков. Например, в запасниках петербургского музея Александра Суворова превратились в труху десятки фигурок — в подвале, где они хранились, лопнули зимой батареи отопления.
При высоких давлениях обнаружены ещё две модификации олова: γ -олово (переход при температуре 161 °C и давлении около 4 ГПа, при комнатной температуре и давлении 10 ГПа) и σ -олово (переход при температуре около 1000 °C и давлении выше 21 ГПа).
Изотопы
Природное олово состоит из десяти стабильных нуклидов с массовыми числами 112 (в смеси 0,96 % по массе), 114 (0,66 %), 115 (0,35 %), 116 (14,30 %), 117 (7,61 %), 118 (24,03 %), 119 (8,58 %), 120 (32,85 %), 122 (4,72 %) и 124 (5,94 %). Для некоторых из них энергетически возможен двойной бета-распад, однако экспериментально он пока (2018 г.) не наблюдался, поскольку предсказываемый период полураспада очень велик (более 10 20 лет).
Олово обладает наибольшим среди всех элементов числом стабильных изотопов, что связано с тем, что 50 (число протонов в ядрах олова) является магическим числом — оно составляет заполненную протонную оболочку в ядре и повышает тем самым энергию связи и стабильность ядра. Известны два дважды магических изотопа олова, оба они радиоактивны, так как удалены от полосы бета-стабильности: нейтронодефицитное 100 Sn ( Z = N = 50 ) и нейтроноизбыточное 132 Sn ( Z = 50 , N = 82 ).
Изотопы олова 117 Sn и 119 Sn являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.
Химические свойства
Металлическое олово
При комнатной температуре олово, подобно соседу по группе германию, устойчиво к воздействию воздуха или воды. Такая инертность объясняется образованием поверхностной плёнки оксидов. Заметное окисление олова на воздухе начинается при температурах выше 150 °C:
При нагревании олово реагирует с большинством неметаллов. При этом образуются соединения в степени окисления +4, которая более характерна для олова, чем +2. Например:
Растворяется в разбавленных кислотах (HCl, H2SO4):
Олово реагирует c концентрированной соляной кислотой. При этом белое олово (α-Sn) образует раствор хлорида олова (II), а серое (β-Sn) хлорида олова (IV):
Состав продукта реакции олова с азотной кислотой зависит от концентрации кислоты. В концентрированной азотной кислоте (60%) образуется оловянная кислота β -SnO2· n H2O (иногда её формулу записывают как H2SnO3). При этом олово ведёт себя как неметалл:
При взаимодействии с разбавленной азотной кислотой (3-5%) образуется нитрат олова (II):
Окисляется растворами щелочей до гидроксостанната (II), который в горячих расстворах склонен к диспропорцианированию:
Sn + NaOH + 3H2O → Na[Sn(OH)3] + H2↑ 2Na[Sn(OH)3] → Sn + Na2[Sn(OH)6] Sn + 2NaOH + 4H2O → Na2[Sn(OH)6] + 2H2↑
Олово (II)
Менее устойчивая степень окисления чем (IV). Вещества имеют высокую восстановительную активность и легко диспропорцианируют:
На воздухе соединения быстро окисляются кислородом, как в твердом виде, так и в растворах:
2SnO + O2 → 2SnO2 2Sn 2+ + O2 + 4H + → 2Sn 4+ + 2H2O
Сильным восстановителем является «оловянная соль» SnCl2 ⋅ 2H2O
Оксид можно получить действием аммиака на горячий раствор хлорида олова в атмосфере СO2:
Также при слабом нагревании гидроксида олова (II) Sn(OH)2 в вакууме или осторожном нагревании некоторых солей:
В растворах солей олова идёт сильный гидролиз:
При действии на раствор соли Sn(II) растворами сульфидов выпадает осадок сульфида олова (II):
Этот сульфид может быть легко окислен до сульфидного комплекса раствором полисульфида натрия, при подкислении превращающегося в осадок сульфида олова (IV):
Олово (IV)
Оксид олова(IV) (SnO2) образуется прямым окислением кислородом. При сплавлении с щелочами образует станнаты, при обработке водой образующие гидроксостаннаты:
При гидролизе растворов солей олова (IV) образуется белый осадок — так называемая α -оловянная кислота:
Свежеполученная α -оловянная кислота растворяется в кислотах и щелочах:
При хранении α -оловянная кислота стареет, теряет воду и переходит в β -оловянную кислоту, которая отличается большей химической инертностью. Данное изменение свойств связывают с уменьшением числа активных HO-Sn группировок при стоянии и замене их на более инертные мостиковые -Sn-O-Sn- связи.
Гидрид олова — станнан SnH4 — можно получить по реакции:
Этот гидрид весьма нестоек и медленно разлагается уже при температуре 0 °C.
Четырёхвалентное олово образует обширный класс оловоорганических соединений, используемых в органическом синтезе, в качестве пестицидов и др.
Нахождение в природе
Олово — редкий рассеянный элемент, по распространённости в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2⋅10 −4 до 8⋅10 −3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).
Месторождения
Мировые месторождения олова находятся в основном в Китае и Юго-Восточной Азии — Индонезии, Малайзии и Таиланде. Также есть крупные месторождения в Южной Америке (Боливии, Перу, Бразилии) и Австралии.
В России запасы оловянных руд расположены в Хабаровском крае (Солнечный район — месторождения Фестивальное и Соболиное; Верхнебуреинский район — Правоурмийское месторождение), в Чукотском автономном округе (Пыркакайские штокверки; рудник/посёлок Валькумей, Иультин — разработка месторождений закрыта в начале 1990-х годов), в Приморском крае (Кавалеровский район), в Якутии (месторождение Депутатское) и других районах.
Распространённость в природе
Распространённость в природе отражена в следующей таблице:
Геол. объект | Камен. метеориты | Дуниты и др. | Базальты и др. | Диориты и др. | Гранитоиды | Глины и др. | Вода океанов | Живое вещество(% на живой вес) | Почва | Зола растений |
---|---|---|---|---|---|---|---|---|---|---|
Содержание, вес. % | 00 1⋅10 −4 | 0 5⋅10 −5 | 0 1,5⋅10 −4 | 0000 − | 000 3⋅10 −4 | 1⋅10 −3 | 0 7⋅10 −7 | 0000 5⋅10 −5 | 1⋅10 −3 | 00 5⋅10 −4 |
В незагрязнённых поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограмм на литр, увеличиваясь в районе оловорудных месторождений, оно попадает в воды за счёт разрушения в первую очередь сульфидных минералов, неустойчивых в зоне окисления. ПДКSn = 2 мг/дм³ .
Олово является амфотерным элементом, то есть элементом, способным проявлять кислотные и основные свойства. Это свойство олова определяет и особенности его распространения в природе. Благодаря этой двойственности олово проявляет литофильные, халькофильные и сидерофильные свойства. Олово по своим свойствам проявляет близость к кварцу, вследствие чего известна тесная связь олова в виде окиси (касситерита) с кислыми гранитоидами (литофильность), часто обогащёнными оловом, вплоть до образования самостоятельных кварц-касситеритовых жил. Щелочной характер поведения олова определяется в образовании довольно разнообразных сульфидных соединений (халькофильность), вплоть до образования самородного олова и различных интерметаллических соединений, известных в ультраосновных породах (сидерофильность).
Формы нахождения
Основная форма нахождения олова в горных породах и минералах — рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах.
Твёрдая фаза. Минералы
В общем можно выделить следующие формы нахождения олова в природе:
- Рассеянная форма; конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W — с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc — с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.
- Минеральная форма: олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует железо Fe +2 : биотиты, гранаты, пироксены, магнетиты, турмалины и так далее. Эта связь обусловлена изоморфизмом, например, по схеме Sn +4 + Fe +2 → 2Fe +3 . В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес. %) (особенно в андрадитах), эпидотах (до 2,84 вес. %) и так далее.
На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2 +1 Fe +2 SnS4 или тиллита PbSnS2 и других минералов.
Собственно минеральные формы
Самородные элементы, сплавы и интерметаллические соединения
Хотя концентрации этих минералов в породах очень низки, однако распространены они в широком круге генетических образований. Среди самородных форм вместе с Sn выявлены Fe, Al, Cu, Ti, Cd и так далее, не считая уже известные самородные платиноиды, золото и серебро. Эти же элементы образуют между собой и различные сплавы: (Cu + Sn + Sb), (Pb + Sn + Sb) и другие, а также твёрдые растворы. Среди интерметаллических соединений установлены стистаит SnSb, атакит (Pd,Pt)3Sn, штумырлит Pt(Sn,Bi), звягинцевит (Pd,Pt)3(Pb,Sn), таймырит (Pd,Cu,Pt)3Sn и другие.
Приведённые формы нахождения олова и других элементов встречаются в различных геологических образованиях:
- Группа интрузивных и эффузивных магматических пород: траппы, пикриты Сибирской платформы, гипербазиты и габброиды Камчатки, кимберлиты Якутии, лампроиты Алдана и так далее; гранитоиды Приморья, Дальнего Востока, Тянь-Шаня.
- Группа метасоматически и гидротермально изменённых пород: медно-никелевые руды Сибирской платформы, золоторудные объекты Урала, Кавказа, Узбекистана и так далее.
- Группа современного рудообразования: пелагические осадки Тихого океана, продукты Большого Трещинного Толбачинского извержения, гидротермальная система Узон на Камчатке и прочие.
- Группа осадочных пород различного происхождения.
Окисные соединения олова
Наиболее известной формой является главный минерал олова — касситерит SnO2, представляющий собой соединение олова с кислородом. В минерале по данным ядерной гамма-резонансной спектроскопии присутствует Sn +4 .
Касситерит
Касситерит (от греч. kassiteros — олово) — главный рудный минерал для получения олова, химическая формула SnO2. Теоретически содержит 78,62 % Sn. Образует отдельные выделения, зерна, сплошные массивные агрегаты, в которых зёрна минерала достигают в размере 3—4 мм и даже больше. В чистом виде бесцветные кристаллы, примеси придают минералу самые различные цвета.
- Плотность 6040—7120 кг/м³ (наиболее низкая у светлоокрашенных касситеритов).
- Твёрдость по Моосу 6,5.
- Блеск — матовый, на гранях — алмазный.
- Спайность несовершенная.
- Излом раковистый.
Основные формы выделения касситерита:
- микровключения в других минералах;
- акцессорные выделения минерала в породах и рудах;
- сплошные или вкрапленные руды: игольчатые радиально-лучистые агрегаты (месторождения Приморья), коломорфные и криптокристаллические выделения и скопления (месторождения Приморья); кристаллическая форма — главная форма выделения касситерита.
В России месторождения касситерита имеются на Северо-Востоке, в Приморье, Якутии, Забайкалье; за рубежом — в Малайзии, Таиланде, Индонезии, КНР, Боливии, Нигерии и других странах.
Гидроокисные соединения
Второстепенное место занимают гидроокисные соединения олова, которые можно рассматривать как соли полиоловянных кислот. К ним можно отнести минерал сукулаит Ta2Sn2 +2 O; твёрдый раствор олова в магнетите вида Fe2SnO4 или Fe3SnO3 (Бретштейн Ю. С., 1974; Воронина Л. Б., 1979); «варламовит» — продукт окисления станнина; считается, что он представляет собой смесь аморфных и полуаморфных соединений Sn, метаоловянной кислоты, поликонденсированной фазы и гидрокасситеритовой фазы. Известны также гидратированные продукты окисления — гидромартит 3SnO·H2O; мушистонит (Cu,Zn,Fe)Sn(OH)6; гидростаннат меди CuSn(OH)6 и другие.
Силикаты
Известна многочисленная группа силикатов олова, представленная малаяитом CaSn[SiO5]; пабститом Ba(Sn, Ti)Si3O9, стоказитом Ca2Sn2Si6O18·4H2O и др. Малаяит образует даже промышленные скопления.
Шпинелиды
Из других окисных соединений известны также шпинелиды, например, минерал нигерит Sn2Fe4Al16O32 (Peterson E. U., 1986).
Сульфидные соединения олова
Включает различные соединения олова с серой. Это вторая по промышленному значению группа минеральных форм нахождения олова. Наиболее важным из них является станнин, второй по значению минерал. Кроме этого, отмечаются франкеит Pb5Sn3Sb2S14, герценбергит SnS, берндтит SnS2, тиллит PbSnS2 и кестерит Cu2ZnSnS4. Выявлены и более сложные сульфидные соединения олова со свинцом, серебром, медью, имеющие в основном минералогическое значение. Тесная связь олова с медью обусловливает частое присутствие на оловорудных месторождениях халькопирита CuFeS2 с образованием парагенезиса касситерит — халькопирит.
Станнин
Станнин (от лат. stannum — олово), оловянный колчедан, минерал из класса сульфидов с общей формулой вида Cu2FeSnS4. Она следует из формулы халькопирита путём замены одного атома Fe на Sn. Содержит 29,58 % Cu, 12,99 % Fe, 27,5 % Sn и 29,8 S, а также примеси Zn, Sb, Cd, Pb и Ag. Широко распространённый минерал в оловорудных месторождениях России. На ряде месторождений России (Приморье, Якутия) и Средней Азии (Таджикистан) он является существенным элементов сульфидных минералов и часто вместе с варламовитом составляет 10—40 % общего олова. Часто образует вкрапленность в сфалерите ZnS, халькопирите. Во многих случаях наблюдаются явления распада станнина с выделением касситерита.
Коллоидная форма
Коллоидные и олово-кремнистые соединения играют значительную роль в геохимии олова, хотя детально она не изучена. Значительное место в геологии элемента играют коломорфные соединения и продукты его кристаллических превращений в скрытокристаллические разности. Коломорфный касситерит рассматривается как форма выражения вязких гелеобразных растворов.
Независимые исследования выявили аномально высокую растворимость SnO2 в хлор-кремниевых растворах. Максимальная растворимость достигается при отношении SnO2\SiO2 = 1,5 .
Анализ свойств соединения Sn(OH)4 и близость их к соединению Si(OH)4 выявляет способность его к полимеризации с образованием в конечном счёте соединений H2Sn k O2 k +1, Sn k O2 k −1(OH)2. В обоих случаях возможно замещение группы (ОН) на анионы F и Cl.
Таким образом, полимеризация молекул Sn(OH)4 и соединение их с молекулами Si(OH)4 ведёт к образованию геля (коллоида) и появлению цепочек H m Sn2 n Si n O p , причём m ≤ 8 , или H s [SiO2 n (SnO m ) d ] (Некрасов И. Я. и др., 1973).
Имеющиеся данные говорят о том, что коллоидная форма является естественным промежуточным звеном при осаждении олова из гидротермальных растворов.
Формы нахождения олова в жидкой фазе
Наименее изученная часть геохимии олова, хотя в газово-жидких включениях установлены касситериты в виде минералов-узников (Кокорин А. М. и др., 1975). Работ по анализу конкретных оловосодержащих природных растворов нет. В основном вся информация основана на результатах экспериментальных исследований, которые говорят только о вероятных формах нахождения олова в растворах. Существенную роль в разработке методики этих исследований принадлежит академику В. Л. Барсукову.
Вся совокупность экспериментально установленных форм нахождения олова в растворах разбивается на группы:
- Ионные соединения. Эти соединения и их структура описываются с позиций классических валентных и стереохимических представлений. Выделяются подгруппы:
- Простые ионы Sn +2 и Sn +4 в основном обнаружены в магматических расплавах, а также в гидротермальных растворах, обладающих низкими значениями pH. Однако в существующих гидротермальных системах, отражаемых составом газово-жидких включений, такие условия не установлены.
- Галогениды — SnF2, SnF4 0 , SnCl4 0 . Считается, что роль хлора в переносе и отложении олова и сопутствующих металлов более значительна, чем роль фтора.
- Гидроксильные соединения. В щелочных условиях исходными являются соединения H2SnO2, H2SnO4, H2SnO3. Эти формы часто устанавливаются на основе известных минеральных форм. Часть этих форм имеет как искусственное (CaSnO3, Ca2SnO4), так и природное (FeSnO2, Fe2SnO4) происхождение. В кислых средах эти соединения ведут себя как слабые основания типа Sn(OH)2, Sn(OH)4. Считается, что одной из форм проявления подобных соединений является варламовит. Согласно экспериментальным данным Sn(OH)4 отлагается только при Т в слабокислых или нейтральных условиях при pH = 7—9 . Соединения Sn(OH)4 и Sn(OH)3 + устойчивы при pH= 7—9, тогда как Sn(OH)2 +2 и Sn(OH) +2 — при pH . Довольно часто группы (ОН) −1 замещаются на F и Cl, создавая галогенозамещённые модификации гидросоединений олова. В общем виде эти формы представлены соединениями Sn(OH)4- kF k или Sn(OH)4− kF k-nCl n. В целом соединение Sn(OH)3F устойчиво при Т = +25…+50 °C , а Sn(OH)2F2 — при Т = 200 °C .
- Сульфидные соединения. По экспериментальным данным в растворе присутствуют соединения SnS4 −4 или SnS3 −2 при pH > 9 ; SnS2O −2 ( pH = 8—9 ) и Sn(SH)4 ( pH = 6 ). Имеется упоминание о существовании соединения типа Na2SnS3, неустойчивого в кислой среде.
- Комплексные соединения олова изучены при растворении касситерита во фторированных средах. Эти соединения отличаются высокой растворимостью. Этими же свойствами обладают соединения, полученные в хлоридных растворах. В качестве основных форм комплексных соединений, известных из экспериментов, можно назвать Na2[Sn(OH)6], Na2[SnF6], Na2[Sn(OH)2F4] и пр. Эксперименты показали, что комплекс Sn(OH)4F2 −2 будет преобладать при Т = 200 °C .
- Коллоидные и олово-кремнистые соединения. Об их существовании говорит присутствие на многих месторождениях коломорфных выделений касситерита.
Промышленные типы месторождений олова
Описанные выше геохимические особенности олова находят косвенное отражение в формационной классификации оловорудных месторождений, предложенной Е. А. Радкевич с последующими дополнениями.
А. Формация оловоносных гранитов. Касситерит установлен в акцессорной части гранитов. Б. Формация редкометальных гранитов. Это граниты литионит-амазонит-альбитового типа (апограниты по А. А. Беусу). Касситерит в акцессорной части вместе колумбит-татнатлитом, микролитом и прочими. В. Формация оловоносных пегматитов. Оловянная минерализация характерна для Be-Li-, Be-Ta-, F-Li- типов. Г. Формация полевошпат-кварц-касситеритовая. Выделена Ив. Ф. Григорьевым. Это кварц-полевошпатовые жилы с касситеритом и другими минералами. Д. Формация кварц-касситеритовая. Распространена на северо-востоке России. Это жильные зоны, грейзены с кварцем, мусковитом, вольфрамитом, касситеритом и другим. Е. Формация касситерит-силикатно-сульфидная с турмалиновым и хлоритовым типами. Одна из основных продуктивных формаций Приморья России. Ж. Формация касситерит-сульфидная. Также основная оловопродуктивная формация. В ней выделяют основные типы: 1) штокверковое олово-вольфрамовое оруденение; 2) рудные тела квар-касситерит-арсенопиритового типа; 3) продуктивные кварцевые жилы сульфидно-касситерит-хлоритового типа. З. Формация оловянно-скарновая. И. Формация деревянистого олова (риолитовая формация). К. Формация основных и ультраосновных пород (по И. Я. Некрасову). Л. Формация щелочных пород Украины (по В. С. Металлиди, 1988).
Производство
В процессе производства рудоносная порода (касситерит) подвергается дроблению до размеров частиц в среднем
10 мм , в промышленных мельницах, после чего касситерит за счет своей относительно высокой плотности и массы отделяется от пустой породы вибрационно-гравитационным методом на обогатительных столах. В дополнение применяется флотационный метод обогащения/очистки руды. Таким образом удается повысить содержание олова в руде до 40—70 %. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Полученный концентрат оловянной руды выплавляется в печах. В процессе выплавки восстанавливается до свободного состояния посредством применения в восстановлении древесного угля, слои которого укладываются поочередно со слоями руды, или алюминием (цинком) в электропечах: SnO2 + C = Sn + CO2 . Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки.
Применение
- Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова — бронза (с медью). Другой известный сплав — пьютер — используется для изготовления посуды. Для этих целей расходуется около 33 % всего добываемого олова. До 60 % производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb3Sn.
- Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («поталь»).
- Искусственные радиоактивные ядерные изомеры олова 117m Sn и 119m Sn — источники гамма-излучения, являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.
- Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.
- Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
- Двуокись олова — очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.
- Смесь солей олова — «жёлтая композиция» — ранее использовалась как краситель для шерсти.
- Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении, по сравнению со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей ёмкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.
- Исследуются изолированные двумерные слои олова (станен), созданные по аналогии с графеном.
Физиологическое действие
О роли олова в живых организмах практически ничего не известно. Ежедневное поступление олова с пищей составляет 0,2—3,5 мг , при регулярном потреблении консервированной пищи — до 38 мг . В теле человека содержится примерно (1—2)·10 −4 % олова, наибольшая концентрация наблюдается в кишечнике.
Металлическое олово не токсично, что позволяет применять его в пищевой промышленности. Олово представляет опасность для человека в виде паров, различных аэрозольных частиц и пыли. При воздействии паров или пыли олова может развиться станноз — поражение лёгких. Станнан (оловянистый водород) — сильнейший яд. Также очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м 3 , ПДК олова в пищевых продуктах 200 мг/кг , в молочных продуктах и соках — 100 мг/кг . Токсическая доза олова для человека — 2 г , интоксикация организма начинается при содержании в организме 250 мг/кг .
Вредные примеси, содержащиеся в олове в обычных условиях хранения и применения, в том числе в расплаве при температуре до 600 °C, не выделяются в воздух в объёмах, превышающих предельно допустимую концентрацию (в частности, определенную по ГОСТ 12.1.005—76. Длительное (в течение 15—20 лет ) воздействие пыли олова оказывает фиброгенное воздействие на лёгкие и может вызвать заболевание работающих пневмокониозом.
Источник статьи: http://chem.ru/olovo.html
Олово (Stannum)
Ат. вес 118,70. Олово не принадлежит к числу широко распространенных металлов (содержание его в земной коре определяется в 8•10 -3 весовых процента), но оно легко выплавляется из руд и поэтому стало известно человеку со времен глубокой древности; человек пользовался оловом в виде его сплава с медью (бронзы) уже в самом начале своей культурной жизни (бронзовый век). Олово изредка находится в природе в самородном состоянии, обыкновенно же оно встречается в виде кислородного соединения SnO2 — оловянного камня, из которого и получается посредством восстановления углем.
Крупнейшие месторождения оловянных руд находятся в Малайе, Вьетнаме, Боливии и Индонезии. В СНГ оловянные руды промышленного значения имеются в Восточной Сибири и в Якутской АССР.
Выплавка олова в капиталистических странах составила в 1954 г. 178 тыс. г.
В свободном состоянии олово — серебристо-белый мягкий металл уд. веса 7,30, плавящийся при 231,9° и обладающий ясно выраженным кристаллическим строением. При сгибании палочки олова слышится характерный треск, вероятно, вследствие трения отдельных кристаллов друг о друга. Олово обладает мягкостью и тягучестью и легко может быть прокатано в тонкие листы, называемые оловянной фольгой или станиолем.
Кроме обыкновенного белого олова, кристаллизующегося в тетрагональной системе, существует еще другое видоизменение олова, представляющее собой серый кристаллический порошок уд. веса 5,7. Уже давно были известны случаи, когда на оловянных предметах, долго остававшихся на сильном морозе, появлялись серые пятна. Это явление получило название оловянной чумы. Впоследствии было установлено, что обыкновенное олово устойчиво только при температуре выше 13,2°; ниже % этой температуры оно может превращаться в серое олово. Чем ниже температура, тем быстрее идет превращение. При нагревании серое олово снова переходит в белое. Появление оловянной чумы резко ускоряется при «заражении» олова некоторыми веществами, например серым оловом.
Если нагреть олово выше 161°, то оно переходит в третью (ромбическую) модификацию. В таком виде оно очень хрупко, легко растирается в порошок, а при падении с небольшой высоты разбивается на мелкие куски.
На воздухе олово при обыкновенной температуре не окисляется, но нагретое выше температуры плавления постепенно превращается в двуокись олова SnO2. Вода не действует на олово. Разбавленные кислоты действуют на него очень медленно, что обусловливается незначительной разностью нормальных потенциалов олова и водорода . Легче всего растворяется олово в концентрированной соляной кислоте.
Очень энергично реагирует олово также и с концентрированной азотной кислотой, превращающей его в белый, нерастворимый в воде порошок — так называемую β -оловянную кислоту.
Источник статьи: http://znaesh-kak.com/x/x/%D0%BE%D0%BB%D0%BE%D0%B2%D0%BE-stannum
Олово (Sn, Stannum)
История олова
Олово – один из древнейших известных человечеству металлов, первые изделия из оловянной бронзы (сплав, где наряду с оловом присутствует медь) датируются III тысячелетием до н.э. Латинское название stannum связано с санскритом, где есть похожий термин для определения сплава серебра и свинца, который был чрезвычайно прочный (calorizator). Собственно название олово было образовано от нескольких слов в славянских языках, обозначающих белый или жёлтый цвет.
Общая характеристика олова
Олово является элементом XIV группы V периода периодической таблицы химических элементов Д.И. Менделеева, имеет атомный номер 50 и атомную массу 118,710. Принятое обозначение – Sn (от латинского stannum).
Нахождение в природе
Олово считается редким рассеянным элементом, основное количество содержится в минерале касситерите (оловянном камне), основные месторождения олова на территории Китая, Индонезии, Таиланда, Малайзии, Перу, Боливии и Бразилии.
Физические и химические свойства
Олово является лёгким, пластичным, легкоплавким и ковким металлом, имеет блестящую поверхность серебристо-белого цвета. Инертен к воздействию воздуха при обычных температурах благодаря образующейся на поверхности оксидной плёнке.
Суточная потребность в олове
Суточная потребность в олове чётко не установлена, считается, что человеку достаточно 2-10 мг в день. Ежедневно организм с едой получает до 50 мг микроэлемента (при заявленной токсичной дозе в 20 мг), но отравления не происходит потому, что усваивается не более 5% олова, остальное естественным путём выводится с мочой.
Продукты питания богатые оловом
Основными поставщиками олова для организма человека традиционно считаются говядина, свинина, индейка и курица, молоко и молочные продукты, фасоль, горох и семечки подсолнуха, свёкла и картофель.
Признаки нехватки олова
Недостаточное количество олова в организме человека встречается крайне редко и характеризуется следующими признаками:
- замедление роста;
- ухудшение слуха;
- потеря веса;
- выпадение волос;
- дисбаланс минерального состава.
Признаки избытка олова
Избыток олова случается у работающих с солями олова и у тех, кто часто питается консервами в железных банках, которые имеют свойство разрушаться при длительном хранении, поэтому, если содержимое банки не используется сразу, есть смысл переложить продукты в стеклянную или пластиковую ёмкость. Избыток олова характеризуется:
- анемией;
- мигренями и головокружениями;
- металлическим привкусом во рту;
- увеличением печени;
- воспалительными реакциями на коже;
- снижением аппетита, рвотой, поносом;
- изменением цвета кожи (бледность с серым оттенком) и дёсен (синева);
- возбуждением и немотивированной агрессией.
Применение олова в жизни
Олово применяют как в чистом виде, так и в сплавах для изготовления безопасных и стойких к коррозии покрытий, также в химической промышленности, стекольном деле и для окраски шерсти.
Полезные свойства олова и его влияние на организм
Роль олова на процессы, происходящие в организме, изучена не в полном объёме, на сегодняшний день понятно, что микроэлемент участвует в процессах роста и в окислительно-восстановительных реакциях, присутствует в желудочном ферменте (гастрин), способствует нормальному развитию костных тканей.
Источник статьи: http://calorizator.ru/element/sn
Олово (Stannum)
Ат. вес 118,70. Олово не принадлежит к числу широко распространенных металлов (содержание его в земной коре определяется в 8•10 -3 весовых процента), но оно легко выплавляется из руд и поэтому стало известно человеку со времен глубокой древности; человек пользовался оловом в виде его сплава с медью (бронзы) уже в самом начале своей культурной жизни (бронзовый век). Олово изредка находится в природе в самородном состоянии, обыкновенно же оно встречается в виде кислородного соединения SnO2 — оловянного камня, из которого и получается посредством восстановления углем.
Крупнейшие месторождения оловянных руд находятся в Малайе, Вьетнаме, Боливии и Индонезии. В СНГ оловянные руды промышленного значения имеются в Восточной Сибири и в Якутской АССР.
Выплавка олова в капиталистических странах составила в 1954 г. 178 тыс. г.
В свободном состоянии олово — серебристо-белый мягкий металл уд. веса 7,30, плавящийся при 231,9° и обладающий ясно выраженным кристаллическим строением. При сгибании палочки олова слышится характерный треск, вероятно, вследствие трения отдельных кристаллов друг о друга. Олово обладает мягкостью и тягучестью и легко может быть прокатано в тонкие листы, называемые оловянной фольгой или станиолем.
Кроме обыкновенного белого олова, кристаллизующегося в тетрагональной системе, существует еще другое видоизменение олова, представляющее собой серый кристаллический порошок уд. веса 5,7. Уже давно были известны случаи, когда на оловянных предметах, долго остававшихся на сильном морозе, появлялись серые пятна. Это явление получило название оловянной чумы. Впоследствии было установлено, что обыкновенное олово устойчиво только при температуре выше 13,2°; ниже % этой температуры оно может превращаться в серое олово. Чем ниже температура, тем быстрее идет превращение. При нагревании серое олово снова переходит в белое. Появление оловянной чумы резко ускоряется при «заражении» олова некоторыми веществами, например серым оловом.
Если нагреть олово выше 161°, то оно переходит в третью (ромбическую) модификацию. В таком виде оно очень хрупко, легко растирается в порошок, а при падении с небольшой высоты разбивается на мелкие куски.
На воздухе олово при обыкновенной температуре не окисляется, но нагретое выше температуры плавления постепенно превращается в двуокись олова SnO2. Вода не действует на олово. Разбавленные кислоты действуют на него очень медленно, что обусловливается незначительной разностью нормальных потенциалов олова и водорода . Легче всего растворяется олово в концентрированной соляной кислоте.
Очень энергично реагирует олово также и с концентрированной азотной кислотой, превращающей его в белый, нерастворимый в воде порошок — так называемую β -оловянную кислоту.
Источник статьи: http://znaesh-kak.com/x/x/%D0%BE%D0%BB%D0%BE%D0%B2%D0%BE-stannum
Станнум металликум – Stannum, Олово металлическое
Sn – химический элемент IV группы периодической системы Менделеева. Мягкий, серебристо-белый металл, устойчив к действию воды и кислорода воздуха. Встречается в природе в виде минералов касситерита и станнина.
В гомеопатии используется чистое олово, изготовленное на химических заводах. Приготовление растираний по § 7. Употребляемые разведения: 3, 6 и выше.
Гомеопатический фармакопатогенез Станнум мет.: Лобные и височные боли, ухудшаются от движения. Тянущие боли в скулах и глазницах. Изъязвление мочек ушей в месте прокола при ношении сережек. Сухость зева, колющие боли в нем. Слизь на задней стенке глотки. Ощущение голода, тошнота и рвота от запаха пищи. Горечь во рту. При пальпации болезненность в области желудка. Схваткообразные колющие боли вокруг пупка с ощущением пустоты в животе. Охриплость голоса. Приступы сухого кашля по вечерам до полуночи, днем кашель с обильной зеленой сладковатой мокротой. Боли в грудной клетке, затрудненное дыхание, колющие боли в левой половине грудной клетки при лежании на том же боку. Слабость конечностей, все роняет, что берет в руки. Спастические подергивания мышц предплечий и кистей рук. Головокружение и слабость при опускании по лестнице, при ходьбе под гору. Отечность в области голеностопов. Лихорадочные состояния по вечерам, с гектическим подъемом темперауры. Обильные поты, особенно под утро. У женщин ощущение тяжести, давления книзу. Менструации преждевременные, профузные. Бели, сопровождаются слабостью. Боли в области влагалища с иррадиацией вверх и к позвоночнику. Печаль, тоска, страх посторонних людей. Ухудшение после смеха, пения, разговора, при лежании на правом боку, после теплых напитков. Улучшение после отхаркивания мокроты, от сильного давления.
Гомеопатический конституциональный тип Олова: Анемичные, истощенные больные, болезненные, с запавшими глазами и темными кругами вокруг них. Невероятная слабость. По утрам, заправляя постель, садится, падая в кресло. Слабость с ощущением холода в груди, нарастает при чтении, пении, разговоре. Не в состоянии разговаривать, не делая паузы. Характерно чувство подавленности, глубокой печали, постоянной тоски, тревоги, боязнь посторонних людей.
Главные показания: Неврастения, психастения, астения после затяжных болезней (гектическая лихорадка, туберкулез, анемия). Невралгия лицевая, шейно-плечевая, межреберная, конечностей, супраорбитальная, височная. Парезы, головокружения, слабость. Болезни органов дыхания – бронхиты, хроническая пневмония, туберкулез с гектической лихорадкой, ночными потами, гнойной мокротой. Кишечные колики, запор, опущение внутренностей. Опущение половых органов, бели у женщин. Импотенция.
Подобные средства: Аргентум нитрикум, Дулькамара, Игнация, Купрум, Сепия, Цинк. Антидоты: Вербаскум, Пульсатилла. Со своей стороны,является антидотом к Аза фетида, Самбукус, Хамомилла, Эвкалипт.
Справочник по гомеопатии . 1923 .
Название и произношение химических элементов таблицы Менделеева
В этом уроке вы научитесь читать периодическую таблицу. Мы внимательно рассмотрим группы периодической таблицы. Кроме того, вы узнаете о различных свойствах групп периодической таблицы, периодов и семейств.
Различные элементы организованы и отображаются в периодической таблице. В этой таблице, разработанной русским химиком Дмитрием Менделеевым (1834–1907) в 1869 году, сгруппированы элементы, которые, хотя и уникальны, обладают некоторыми общими химическими свойствами с другими элементами. Свойства элементов определяют их физическое состояние при комнатной температуре: они могут быть газами, твердыми телами или жидкостями. Элементы также обладают специфической химической активностью, способностью соединяться и химически связываться друг с другом.
В периодических таблицах есть много типов физических и химических элементов, которые устанавливаются в соответствии с их свойствами и позиционируются из-за их атомной структуры. Периодические таблицы содержат строки и столбцы. В периодической таблице строки расположены слева направо, а столбцы — сверху вниз.
Периодические таблицы — один из важнейших инструментов в истории химии. Он сообщает нам атомные свойства каждого типа химического вещества, также сообщает об атомном номере, атомной массе, а также показывает сравнение между элементами. Итак, здесь мы показываем некоторые моменты о том, как читать периодическую таблицу.
Таблица исключений с правильным произношением химических элементов на русском языке
АТОМНЫЙ НОМЕР | РУССКОЕ НАЗВАНИЕ ХИМИЧЕСКОГО ЭЛЕМЕНТА | ХИМИЧЕСКИЙ ЗНАК | ПРОИЗНОШЕНИЕ НА РУССКОМ ЯЗЫКЕ |
1 | Водород | H | Аш |
6 | Углерод | C | Це |
7 | Азот | N | Эн |
8 | Кислород | O | О |
14 | Кремний | Si | Силициум |
15 | Фосфор | P | Пэ |
16 | Сера | S | Эс |
26 | Железо | Fe | Феррум |
29 | Медь | Cu | Купрум |
33 | Мышьяк | As | Арсеникум |
47 | Серебро | Ag | Аргентум |
50 | Олово | Sn | Станум |
51 | Сурьма | Sb | Стибиум |
79 | Золото | Au | Аурум |
80 | Ртуть | Hg | Гидраргирум |
82 | Свинец | Pb | Плюмбум |
Примечание: произношение остальных химических элементов соответствует названию элементов на русском языке (пример: аргон произносится как аргон, хром произносится как хром и т.д.) |
В таблице ниже описаны произношения всех известных на данный момент химических элементов.
Полная таблица латинских названий химических элементов с произношением на русском языке
(расположение слоев в порядке заполнения подуровней)
Атомный номер | Русское название химического элемента | Латинское название химического элемента | Химический знак | Произношение на русском языке |
1 | водород | hydrogenium | H | аш |
2 | гелий | helium | He | гелий |
2 период химических элементов | ||||
3 | литий | lithium | Li | литий |
4 | бериллий | beryllium | Be | бериллий |
5 | бор | borium | B | бор |
6 | углерод | carboneum | C | це |
7 | азот | nitrogenium | N | эн |
8 | кислород | oxygenium | O | о |
9 | фтор | fluorum | F | фтор |
10 | неон | neon | Ne | неон |
3 период химических элементов | ||||
11 | натрий | natrium | Na | натрий |
12 | магний | magnesium | Mg | магний |
13 | алюминий | aluminium | Al | алюминий |
14 | кремний | silicium | Si | силициум |
15 | фосфор | phosphorus | P | пэ |
16 | сера | sulfur | S | эс |
17 | хлор | clorum | Cl | хлор |
18 | аргон | argon | Ar | аргон |
4 период химических элементов | ||||
19 | калий | kalium | K | калий |
20 | кальций | calcium | Ca | кальций |
21 | скандий | scandium | Sc | скандий |
22 | титан | titanium | Ti | титан |
23 | ванадий | vanadium | V | ванадий |
24 | хром | chromium | Cr | хром |
25 | марганец | manganum | Mn | марганец |
26 | железо | ferrum | Fe | феррум |
27 | кобальт | cobaltum | Co | кобальт |
28 | никель | niccolum | Ni | никель |
29 | медь | cuprum | Cu | купрум |
30 | цинк | zincum | Zn | цинк |
31 | галий | gallium | Ga | галий |
32 | германий | germanium | Ge | германий |
33 | мышьяк | arsenicum | As | арсеникум |
34 | селен | selenium | Se | селен |
35 | бром | bromum | Br | бром |
36 | криптон | krypton | Kr | криптон |
5 период химических элементов | ||||
37 | рубидий | rubidium | Rb | рубидий |
38 | стронций | strontium | Sr | стронций |
39 | иттрий | yttrium | Y | иттрий |
40 | цирконий | zirconium | Zr | цирконий |
41 | ниобий | niobium | Nb | ниобий |
42 | молибден | molybdaenum | Mo | молибден |
43 | технеций | technetium | Tc | технеций |
44 | рутений | ruthenium | Ru | рутений |
45 | родий | rhodium | Rh | родий |
46 | палладий | palladium | Pd | палладий |
47 | серебро | argentum | Ag | аргентум |
48 | кадмий | cadmium | Cd | кадмий |
49 | индий | indium | In | индий |
50 | олово | stannum | Sn | станум |
51 | сурьма | stibium | Sb | стибиум |
52 | теллур | tellurium | Te | теллур |
53 | йод | iodum | I | йод |
54 | ксенон | xenon | Xe | ксенон |
6 период химических элементов | ||||
55 | цезий | ceslum | Cs | цезий |
56 | барий | barlum | Ba | барий |
57 | лантан | lanthanum | La | лантан |
58 | церий | cerium | Ce | церий |
59 | празеодим | praseodymium | Pr | празеодим |
60 | неодим | neodymium | Nd | неодим |
61 | прометий | promethium | Pm | прометий |
62 | самарий | samarium | Sm | самарий |
63 | европий | europium | Eu | эвропий |
64 | гадолиний | gadolinium | Gd | гадолиний |
65 | тербий | terbium | Tb | тербий |
66 | диспрозий | dysprosium | Dy | диспрозий |
67 | гольмий | holmium | Ho | гольмий |
68 | эрбий | erbium | Er | эрбий |
69 | тулий | thulium | Tm | тулий |
70 | иттербий | ytterbium | Yb | иттербий |
71 | лютеций | lutetium | Lu | лютеций |
72 | гафний | hafnium | Hf | гафний |
73 | тантал | tantalum | Ta | тантал |
74 | вольфрам | wolframium | W | вольфрам |
75 | рений | rhenium | Re | рений |
76 | осмий | osmium | Os | осмий |
77 | иридий | iridium | Ir | иридий |
78 | платина | platinum | Pt | платины |
79 | золото | aurum | Au | аурум |
80 | ртуть | hydrargyrum | Hg | гидраргирум |
81 | таллий | thallium | Tl | таллий |
82 | свинец | plumbum | Pb | плюмбум |
83 | висмут | bismuthum | Bi | висмут |
84 | полоний | polonium | Po | полоний |
85 | астат | astatium | At | астата |
86 | радон | radon | Rn | радон |
7 период химических элементов | ||||
87 | франций | francium | Fr | франций |
88 | радий | radium | Ra | радий |
89 | актиний | actinium | Ac | актиний |
90 | торий | thorium | Th | торий |
91 | протактиний | protactinium | Pa | протактиний |
92 | урана | uranium | U | уран |
93 | нептуний | neptunium | Np | нептуний |
94 | плутоний | plutonium | Pu | плутоний |
95 | америций | americium | Am | америций |
96 | кюрий | curium | Cm | кюрий |
97 | берклий | berkelium | Bk | берклий |
98 | калифорний | californium | Cf | калифорний |
99 | эйнштейний | einsteinium | Es | эйнштейний |
100 | фермий | fermium | Fm | фермий |
101 | менделеевий | mendelevium | Md | менделеевий |
102 | нобелий | nobelium | No | нобелий |
103 | лоуренсий | lawrencium | Lr | лоуренсий |
104 | резерфордий | rutherfordium | Rf | резерфордий |
105 | дубний | dubnium | Db | дубний |
106 | сиборгий | seaborgium | Sg | сиборгий |
107 | борий | bohrium | Bh | борий |
108 | хассий | hassium | Hs | хассий |
109 | мейтнерий | meitnerium | Mt | мейтнерий |
110 | Дармштадтий (Унуннилий) | Darmstadtium (Ununnilium) | Ds (Uun) | дармштадий |
111 | Рентгений (Унунуний) | Roentgenium (Unununium) | Rg (Uuu) | рентгений |
112 | Коперниций (Унунбий) | Copernicium (Ununbium) | Cn (Uub) | коперниций |
113 | Нихоний (Унунтрий) | Nihonium (Ununtrium) | Nt (Unt) | нихоний |
114 | Флеровий (Унунквадий) | Flerovium (Ununquadium) | Fl (Uuq) | флеровий |
115 | Московий (Унунпентий) | Moscovium (Ununpentium) | Mc (Uup) | московий |
116 | Ливерморий (Унунгексий) | Livermorium (Ununhexium) | Lv (Uuh) | ливерморий |
117 | Теннессин (Унунсептий) | Tennessine (Ununseptium) | Тc (Uus) | теннессин |
118 | Оганесон (Унуноктий) | Oganesson (Ununoctium) | Og (Uuo) | оганесон |
8 период химических элементов | ||||
119 | унуненний | ununnenium | Uue | |
120 | унбинилий | unbinilium | Ubn | |
121 | унбиуний | unbiunium | Ubu | |
122 | унбибий | unbibium | Ubb | |
123 | унбитрий | unbitrium | Ubt | |
124 | унбиквадий | unbiquadium | Ubq | |
125 | унбипентий | unbipentium | Ubp | |
126 | унбигексий | unbihexium | Ubh |
Источник статьи: http://scibio.ru/himiya/tablitsy/latinskie_nazvaniya_khimicheskikh_elementov.html
Правила написания названий химических соединений
ПРАВИЛА НАПИСАНИЯ НАЗВАНИЙ ХИМИЧЕСКИХ СОЕДИНЕНИЙ
1. В переводе на русский язык следует придерживаться написания названий химических соединений в соответствии c принятой в РФ номенклатурой.
2. Названия сложных химических соединений пишут слитно.
Например: этилендиаминтетрауксусная кислота
Цифровые обозначения положения заместителя в ядре пишут через дефис.
3. Приставки цис-, транс-, бис-, симм-, син – в названиях органических соединений обычно пишут через дефис.
Например: транс-олеиновая кислота, бис-триметиленэтилен, син-диазотат
4. Приставки ди-, три-, цикло-, изо-, окон-, метокои-, алко-, кои-, амино-, нитро-, циан – в названиях органических соединений обычно пишут слитно.
Например: дихлорэтан, циклогексиламин, изоцианат, оксигидрохинон, алкоксибензол, нитротолуол
Слова “вторичный”, “третичный”, “четвертичный” сокращаются до “втор”, “трет”, четверт” и пишут без точки.
5. Приставки орто-, мета-, пара – в названиях органических соединений пишут через дефис и сокращенно.
Например: о-нитротолуол, п-коилол, м-дихлорбензол.
Приставки орто-, мета-, пара – в названиях неорганических соединений пишут слитно.
Например: ортофосфорная кислота, параводород
Со словами “кислота”, “соединение”, “модификация” и др. приставки пишут через дефис полностью.
Например: орто-кислота, мета-соединение, пара-модификация.
6. Нормальное строение органических соединений указывают строчной буквой и через дефис.
7. В начале предложений или после точки названия органических соединений, начинающиеся с цифры, буквы или с приставок, пишут с прописной буквы.
8. Нормальность раствора после цифры обозначают строчной буквой н. с точкой.
Примечание. В иностранном тексте нормальность, равную единице, иногда обозначают прописной латинской буквой N и без указания числа (т. е. единицы). При переводе опускать единицу не следует.
Например: I н. раствор H2SO4, a не N H2SO4
Молярную концентрацию раствора обозначают строчной латинской буквой “c”.
Примечание. В иностранном тексте молярную концентрацию, равную единице, иногда обозначают прописной латинской буквой М без указания числа (т. е. единицы). При переводе не рекомендуется вместо термина “молярная концентрация применять термин “молярность”.
Например: молярная концентрация с (HCl) = I моль/л, а не IM раствор HCl или М HCl.
9. Валентность элементов указывают в скобках римскими цифрами после названия элемента.
10. Названия изотопов обычно пишут словами с дефисом перед цифрой.
11. Процент (%) как единица не употребляется со словами атомный, объемный и молярный. Эти слова следует употреблять в наименовании величины, например: атомная доля, %; объемная доля, %;
12. Обозначение единицы “моль” при цифре не сокращают и не склоняют.
Например: 1 моль, 5 моль, в 10 моль
13. Названия химических элементов и соединений со словами “содержащий”, “соединение”, “производное” и т. п. пишут слитно без соединительной гласной.
Например: фторсодержащий, нитросоединение, ацетилпроизводное, но серосодержащий.
14. Массовое число изотопа (ранее атомный вес) обозначают цифрой слева вверху у символа элемента или в строку через дефис, если вместо символа элемента употребляется его написание словом.
Например: 146С, а не C146; углерод-14.
Источник статьи: http://pandia.ru/text/78/187/18216.php
Латинские названия химических элементов (Таблица)
По древней традиции, корни которой тянутся к средним векам, все химические элементы получали свои названия на латинском языке; эта традиция не нарушается и в наше время. В начале XIX столетия для химических элементов были предложены сокращенные буквенные обозначения, которыми служили или одна начальная буква латинских названий элементов, или, значительно чаще, две буквы, начальная и одна из последующих. Так образовались современные знаки (символы) химических элементов, получившие впоследствии международное признание.
Русские названия химических элементов в большинстве представляют собой их латинские названия с измененными окончаниями в соответствии с особенностями нашего языка. Но вместе с тем можно назвать много элементов, которые имеют на русском языке особые названия, отличные от латинских. Этими названиями служат или коренные русские слова, например железо (Fe), медь (Сu), ртуть (Hg), или перевод латинского названия элемента на русский язык, например водород (Н), кислород (О). Для того, чтобы в этих случаях можно было понять происхождение символов, следует сопоставить их с латинскими названиями соответствующих элементов, указанными в табл. 2-16.
Попутно в примечаниях к таблице указываются те особые названия и обозначения химических элементов, которые применяются в научной литературе ряда зарубежных стран.
Латинское название элемента
1) Жансен и независимо от него Локьер в 1868 г. обнаружили в спектре солнца неизвестные до того времени линии; этот новый элемент был назван гелием, так как предполагалось, что он находится только на солнце. Через 27 лет Рамзаи и Клив обнаружили те же линии в спектре нового газа, полученного ими при анализе минерала клевеита; название гелий для этого элемента было сохранено.
2) Еще в конце XVIII в. было известно, что при действии серной кислоты на плавиковый шпат выделяется особая кислота, которая разъедает стекло. В 1810 г. Ампер показал, что эта кислота подобна соляной и является соединением с водородом некоторого неизвестного элемента, который он назвал фтором. В чистом виде фтор удалось получить Муассану только в 1886 г.
3) Окись магния была известна давно, ее исследовал Блэк еще в 1775 г. Деви в 1808 г. пытался получить металлический магний, но в чистом виде металл получить ему не удалось.
4) Двуокись титана была получена лабораторным путем еще в конце XVIII в., Берцелиус получал титан, но не вполне чистый. Более чистый металлический титан был получен Грегор, затем Муассаном.
5) Сернистые соединения мышьяка былп известны в древнее время.
6) В начале XIX в. была получена смесь ниобия и тантала, которая рассматривалась как новый элемент; ему было присвоено название колумбий. В Америке и Англии ниобий до сих пор носит название колумбий.
7) В виде окиси церий был получен в 1803 г.
Долгое время смесь празеодима и неодима считалась отдельным элементом, который назывался дидием (Di).
9) Как особый металл платина была описана в 1750 г.; до 1810 г. единственным местом добычи платины была Колумбия. Затем платина была найдена в других местах, в том числе на Урале, который до настоящего времени является наиболее богатым источником ее получения.
10) Двуокись урана, полученная впервые еще в 1789 г., была принята вначале за новый элемент. Металлический уран был получен впервые в 1842 г., его радиоактивные свойства были открыты только в 1896 г.
_______________
Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, – М.: 1960.
Источник статьи: http://infotables.ru/khimiya/382-latinskie-nazvaniya-khimicheskikh-elementov-tablitsa
Самоучитель по химии
Пособие для тех, кто не знает, но хочет узнать и понять химию
Часть I. Элементы общей химии
(первый уровень сложности)
Я, Френкель Евгения Николаевна, заслуженный работник высшей школы РФ, выпускница химического факультета МГУ 1972 г., педагогический стаж 34 года. Кроме того, я мать троих детей и бабушка четырех внуков, старший из которых школьник.
Меня волнует проблема школьных учебников. Главная беда многих из них – тяжелый язык, который требует дополнительного «перевода» на понятный школьнику язык изложения учебного материала. Ко мне часто обращаются ученики средней школы с такой просьбой: «Переведите текст учебника, чтобы понятно было». Поэтому я написала «Самоучитель по химии», в котором многие сложные вопросы изложены вполне доступно и в то же время научно. На основе этого «Самоучителя», который был написан в 1991 г., я разработала программу и содержание подготовительных курсов. На них обучались сотни школьников. Многие из них начинали с нуля и за 40 занятий понимали предмет настолько, что сдавали экзамены на «4» и «5». Поэтому в нашем городе мои пособия-самоучители расходятся как горячие пирожки.
Может, и другим пригодятся мои наработки?
Статья подготовлена при поддержке учебного центра «МакарОФФ». Учебный центр предлагает Вам пройти курсы маникюра в Москве недорого. Профессиональная школа маникюра проводит обучение по маникюру, педикюру, наращиванию и дизайну ногтей, а также курсы мастеров-универсалов ногтевого сервиса, наращивание ресниц, микроблейдинг, шугаринг и эпиляция воском. Центр выдаёт дипломы после обучения и гарантированное трудоустройство. Подробная информация обо всех программах обучения, цены, расписание, акции и скидки, контакты на сайте: www.akademiyauspeha.ru .
Предисловие
Уважаемые читатели! Предлагаемый вашему вниманию «Самоучитель по химии» – не обычный учебник. В нем не просто излагаются какие-то факты или описываются свойства веществ. «Самоучитель» объясняет и учит даже в том случае, если вы, к сожалению, не знаете и не понимаете химии, а к учителю обратиться за разъяснениями не можете или стесняетесь. В виде рукописи эта книга используется школьниками с 1991 г., и не было ни одного ученика, который бы провалился на экзамене по химии и в школе, и в вузах. Причем многие из них совсем не знали химии.
«Самоучитель» рассчитан на самостоятельную работу ученика. Главное – отвечать по ходу чтения на те вопросы, которые встречаются в тексте. Если вы не смогли ответить на вопрос, то читайте внимательнее текст еще раз – все ответы имеются рядом. Желательно также выполнять все упражнения, которые встречаются по ходу объяснения нового материала. В этом помогут многочисленные обучающие алгоритмы, которые практически не встречаются в других учебниках. С их помощью вы научитесь:
составлять химические формулы по валентности;
составлять уравнения химических реакций, расставлять в них коэффициенты, в том числе в уравнениях окислительно-восстановительных процессов;
составлять электронные формулы (в том числе краткие электронные формулы) атомов и определять свойства соответствующих химических элементов;
предсказывать свойства некоторых соединений и определять, возможен данный процесс или нет.
В пособии два уровня сложности. Самоучитель первого уровня сложности состоит из трех частей.
I часть. Элементы общей химии (публикуемая).
II часть. Элементы неорганической химии.
III часть. Элементы органической химии.
Книг второго уровня сложности тоже три.
Теоретические основы общей химии.
Теоретические основы неорганической химии.
Теоретические основы органической химии.
Глава 1. Основные понятия химии.
Глава 2. Важнейшие классы неорганических соединений.
Глава 3. Элементарные сведения о строении атома. Периодический закон Д.И.Менделеева.
Глава 4. Понятие о химической связи.
Глава 6. Электролитическая диссоциация.
6.1. Понятие о рН (водородном показателе).
Глава 7. Понятие об окислительно-восстановительных реакциях.
Глава 8. Расчеты по химическим формулам и уравнениям.
8.2. Задачи, решаемые по стандартным формулам.
8.2.2. Задачи по теме «Способы выражения концентрации растворов».
8.2.3. Задачи по теме «Количественный состав вещества».
8.3. Задачи, решаемые по уравнениям реакций.
8.3.1. Оформление расчетов по уравнениям реакций.
8.3.2. Задачи по теме «Количественный состав растворов и смесей».
8.3.3. Задачи на установление формулы вещества.
8.4. Задачи для самостоятельного решения.
Глава 1. Основные понятия химии
Что такое химия? Где мы встречаемся с химическими явлениями?
Химия – везде. Сама жизнь – это бесчисленное множество разнообразных химических реакций, благодаря которым мы дышим, видим голубое небо, ощущаем изумительный запах цветов.
Химия изучает вещества, а также химические процессы, в которых участвуют эти вещества.
Вещество – это то, из чего состоит окружающий нас мир и мы сами.
Что такое химический процесс (явление)?
К химическим явлениям относятся процессы, в результате которых изменяется состав или строение молекул, образующих данное вещество*. Изменились молекулы – изменилось вещество (оно стало другим), изменились его свойства. Например, свежее молоко стало кислым, зеленые листья стали желтыми, сырое мясо при обжаривании изменило запах.
Все эти изменения – следствие сложных и многообразных химических процессов. Однако признаки простых химических реакций, в результате которых изменяется состав и строение молекул, такие же: изменение цвета, вкуса или запаха, выделение газа, света или тепла, появление осадка.
Что же такое молекулы, изменение которых влечет за собой столь разнообразные проявления?
Молекулы – это мельчайшие частицы вещества, отражающие его качественный и количественный состав и его химические свойства.
Изучая состав и строение одной молекулы, можно предсказать многие свойства данного вещества в целом. Такие исследования – одна из главных задач химии.
Как устроены молекулы? Из чего они состоят?
Молекулы состоят из атомов. Атомы в молекуле соединены при помощи химических связей. Каждый атом обозначается при помощи символа (химического знака). Например, Н – атом водорода, О – атом кислорода.
Число атомов в молекуле обозначают при помощи индекса – цифры внизу справа после символа.
О2 – это молекула вещества кислорода, состоящая из двух атомов кислорода;
Н2О – это молекула вещества воды, состоящая из двух атомов водорода и одного атома кислорода.
Если атомы не связаны химической связью, то их число обозначают при помощи коэффициента – цифры перед символом:
Аналогично изображают число молекул:
2Н2 – две молекулы водорода;
Почему атомы водорода и кислорода имеют разные названия и разные символы? Потому что это атомы разных химических элементов.
Химический элемент – это вид атомов с одинаковым зарядом ядер.
Что такое ядро атома? Почему заряд ядра является признаком принадлежности атома к данному химическому элементу? Чтобы ответить на эти вопросы, следует уточнить: изменяются ли атомы в химических реакциях, из чего состоит атом?
Нейтральный атом не имеет заряда, хотя и состоит из положительно заряженного ядра и отрицательно заряженных электронов:
В ходе химических реакций число электронов любого атома может изменяться, а вот заряд ядра атома не меняется. Поэтому заряд ядра атома – своеобразный «паспорт» химического элемента. Все атомы с зарядом ядра +1 принадлежат химическому элементу под названием водород. Атомы с зарядом ядра +8 относятся к химическому элементу кислороду.
Каждому химическому элементу присвоен химический символ (знак), порядковый номер в таблице Д.И.Менделеева (порядковый номер равен заряду ядра атома), определенное название, а для некоторых химических элементов – особое прочтение символа в химической формуле (табл. 1).
№ п/п | № в таблице Д.И.Менделеева | Символ | Прочтение в формуле | Название |
1 | 1 | H | аш | Водород |
2 | 6 | C | це | Углерод |
3 | 7 | N | эн | Азот |
4 | 8 | O | о | Кислород |
5 | 9 | F | фтор | Фтор |
6 | 11 | Na | натрий | Натрий |
7 | 12 | Mg | магний | Магний |
8 | 13 | Al | алюминий | Алюминий |
9 | 14 | Si | силициум | Кремний |
10 | 15 | P | пэ | Фосфор |
11 | 16 | S | эс | Сера |
12 | 17 | Cl | хлор | Хлор |
13 | 19 | K | калий | Калий |
14 | 20 | Ca | кальций | Кальций |
15 | 23 | V | ванадий | Ванадий |
16 | 24 | Cr | хром | Хром |
17 | 25 | Mn | марганец | Марганец |
18 | 26 | Fe | феррум | Железо |
19 | 29 | Cu | купрум | Медь |
20 | 30 | Zn | цинк | Цинк |
21 | 35 | Br | бром | Бром |
22 | 47 | Ag | аргентум | Серебро |
23 | 50 | Sn | станнум | Олово |
24 | 53 | I | йод | Йод |
25 | 56 | Ba | барий | Барий |
26 | 79 | Au | аурум | Золото |
27 | 80 | Hg | гидраргирум | Ртуть |
28 | 82 | Pb | плюмбум | Cвинец |
Вещества бывают простые и сложные. Если молекула состоит из атомов одного химического элемента, это простое вещество. Простые вещества – Са, Сl2, О3, S8 и т. д.
Молекулы сложных веществ состоят из атомов разных химических элементов. Сложные вещества – H2O, NO, H3PO4, C12H22O11 и т. д.
Задание 1.1. Укажите число атомов в молекулах сложных веществ H2O, NO, H3PO4, C12H22O11, назовите эти атомы.
Возникает вопрос: почему для воды всегда записывается формула Н2О, а не НО или НО2? Опыт доказывает, что состав воды, полученной любым способом или взятой из любого источника, всегда соответствует формуле Н2О (речь идет о чистой воде).
Дело в том, что атомы в молекуле воды и в молекуле любого другого вещества соединены при помощи химических связей. Химическая связь соединяет как минимум два атома. Поэтому, если молекула состоит из двух атомов и один из них образует три химические связи, то другой также образует три химические связи.
Число химических связей, образуемых атомом, называют его валентностью.
Если обозначить каждую химическую связь черточкой, то для молекулы из двух атомов АБ получим АБ, где тремя черточками показаны три связи, образуемые элементами А и Б между собой.
В данной молекуле атомы А и Б трехвалентны.
Известно, что атом кислорода двухвалентен, атом водорода одновалентен.
В о п р о с. Сколько атомов водорода может присоединиться к одному атому кислорода?
О т в е т. Два атома. Состав воды описывают формулой Н–О–Н, или Н2О.
П о м н и т е! В устойчивой молекуле не может быть «свободных», «лишних» валентностей. Поэтому для двухэлементной молекулы число химических связей (валентностей) атомов одного элемента равно общему числу химических связей атомов другого элемента.
Валентность атомов некоторых химических элементов постоянна (табл. 2).
Символы элементов
Для других атомов валентность** можно определить (вычислить) из химической формулы вещества. При этом нужно учитывать изложенное выше правило о химической связи. Например, определим валентность x марганца Mn по формуле вещества MnO2:
Общее число химических связей, образуемых одним и другим элементом (Mn и О), одинаково:
x · 1 = 4; II · 2 = 4. Отсюда х = 4, т.е. в этой химической формуле марганец четырехвалентен.
П р а к т и ч е с к и е в ы в о д ы
1. Если один из атомов в молекуле одновалентен, то валентность второго атома равна числу атомов первого элемента (см. на индекс!):
2. Если число атомов в молекуле одинаково, то валентность первого атома равна валентности второго атома:
3. Если у одного из атомов индекс отсутствует, то его валентность равна произведению валентности второго атома на его индекс:
4. В остальных случаях ставьте валентности «крест-накрест», т.е. валентность одного элемента равна индексу другого элемента:
Задание 1.2. Определите валентности элементов в соединениях:
П о д с к а з к а. Сначала укажите валентность атомов, у которых она постоянная. Аналогично определяется валентность атомных групп ОН, РО4, SО4 и др.
Задание 1.3. Определите валентности атомных групп (в формулах подчеркнуты):
(Обратите внимание! Одинаковые группы атомов имеют одинаковые валентности во всех соединениях.)
Зная валентности атома или группы атомов, можно составить формулу соединения. Для этого пользуются следующими правилами.
• Если валентности атомов одинаковы, то и число атомов одинаково, т.е. индексы не ставим:
• Если валентности кратны (обе делятся на одно и то же число), то число атомов элемента с меньшей валентностью определяем делением:
• В остальных случаях индексы определяют «крест-накрест»:
Задание 1.4. Составьте химические формулы соединений:
Вещества, состав которых отражают химические формулы, могут участвовать в химических процессах (реакциях). Графическая запись, соответствующая данной химической реакции, называется уравнением реакции. Например, при сгорании (взаимодействии с кислородом) угля происходит химическая реакция:
Запись показывает, что один атом углерода С, соединяясь с одной молекулой кислорода O2, образует одну молекулу углекислого газа СО2. Число атомов каждого химического элемента до и после реакции должно быть одинаково. Это правило – следствие закона сохранения массы вещества. Закон сохранения массы: масса исходных веществ равна массе продуктов реакции.
Закон был открыт в XVIII в. М.В.Ломоносовым и, независимо от него, А.Л.Лавуазье.
Выполняя этот закон, необходимо в уравнениях химических реакций расставлять коэффициенты так, чтобы число атомов каждого химического элемента не изменялось в результате реакции. Например, при разложении бертолетовой соли KClO3 получается соль KСl и кислород О2:
KClO3 KСl + О2.
Число атомов калия и хлора одинаково, а кислорода – разное. Уравняем их:
Теперь изменилось число атомов калия и хлора до реакции. Уравняем их:
Наконец, между правой и левой частями уравнения можно поставить знак равенства:
Полученная запись показывает, что при разложении сложного вещества KClO3 получаются два новых вещества – сложное KСl и простое – кислород O2. Числа перед формулами веществ в уравнениях химических реакций называют коэффициентами.
При подборе коэффициентов необязательно считать отдельные атомы. Если в ходе реакции не изменился состав некоторых атомных групп, то можно учитывать число этих групп, считая их единым целым. Составим уравнение реакции веществ CaCl2 и Na3PO4:
CaCl2 + Na3PO4 ……………… .
П о с л е д о в а т е л ь н о с т ь д е й с т в и й
1) Определим валентность исходных атомов и группы PO4:
2) Напишем правую часть уравнения (пока без индексов, формулы веществ в скобках надо уточнить):
3) Составим химические формулы полученных веществ по валентностям составных частей:
4) Обратим внимание на состав самого сложного соединения Ca3(PO4)2 и уравняем число атомов кальция (их три) и число групп РО4 (их две):
5) Число атомов натрия и хлора до реакции теперь стало равным шести. Поставим соответствующий коэффициент в правую часть схемы перед формулой NaCl:
Пользуясь такой последовательностью, можно уравнять схемы многих химических реакций (за исключением более сложных окислительно-восстановительных реакций, см. главу 7).
Типы химических реакций. Химические реакции бывают разных типов. Основными являются четыре типа – соединение, разложение, замещение и обмен.
1. Реакции соединения – из двух и более веществ образуется одно вещество:
2. Реакции разложения – из одного вещества получаются два вещества или более:
Ca(HCO3)2 CaCO3 + CO2 + H2O.
3. Реакции замещения – реагируют простое и сложное вещества, образуются также простое и сложное вещества, причем простое вещество замещает часть атомов сложного вещества:
А + ВХ АХ + В.
4. Реакции обмена – здесь реагируют два сложных вещества и получаются два сложных вещества. В ходе реакции сложные вещества обмениваются своими составными частями:
АВ + XY АY + XВ.
Существуют и другие типы химических реакций.
Задание 1.5. Расставьте коэффициенты в схемах реакций:
Na + Cl2 NaCl,
NaHCO3 Na2CO3 + CO2 + H2O,
Fe + AgNO3 Fe(NO3)2 + Ag,
Fe(OH)3 + HCl FeСl3 + H2O.
Задание 1.6. Расставьте коэффициенты и определите типы химических реакций:
Fe(OH)3 Fe2O3 + H2O,
Al + H2SO4 Al2(SO4)3 + H2,
HNO3 + Cu(OH)2 Cu(NO3)2 + H2O,
P + O2 P2O5.
Выводы по главе 1. Вещества состоят из молекул, молекулы состоят из атомов, атомы с одинаковым зарядом ядра относятся к одному и тому же химическому элементу.
Вещества бывают простые и сложные. Состав веществ показывают при помощи химических формул. Формулы веществ составляют, учитывая валентности составных частей. Запись химического процесса при помощи формул называется уравнением химической реакции. Химические реакции бывают разных типов: обмена, замещения, разложения, соединения и др.
Упражнения к главе 1
1. Выучите табл. 1. Проверьте себя, напишите химические символы: серы, цинка, олова, магния, марганца, калия, кальция, свинца, железа и фтора.
2. Напишите символы химических элементов, которые в формулах произносятся как: «аш», «о», «купрум», «эс», «пэ», «гидраргирум», «станнум», «плюмбум», «эн», «феррум», «це», «аргентум». Назовите эти элементы.
3. Укажите число атомов каждого химического элемента в формулах соединений:
4. Определите, какие из веществ – простые, а какие – сложные:
Прочитайте формулы этих веществ.
5. Выучите табл. 2. Составьте химические формулы веществ по известной валентности элементов и атомных групп:
6. Определите валентность химических элементов в соединениях:
7. Расставьте коэффициенты и укажите типы химических реакций:
а) Mg + O2 MgO;
б) Al + CuCl2 AlCl3 + Cu;
в) NaNO3 NaNO2 + O2;
г) AgNO3 + BaCl2 AgCl + Ba(NO3)2;
д) Al + HCl AlCl3 + H2;
е) KOH + H3PO4 K3PO4 + H2O;
ж) CH4 C2H2 + H2.
* Существуют вещества, построенные не из молекул. Но об этих веществах речь пойдет позже (см. главу 4).
** Строго говоря, по нижеизложенным правилам определяют не валентность, а степень окисления (см. главу 7). Однако во многих соединениях числовые значения этих понятий совпадают, поэтому по формуле вещества можно определять и валентность.
Источник статьи: http://him.1sept.ru/article.php?ID=200701302