Олово
(молярная масса)
(первый электрон)
Олово (химический символ — Sn; лат. Stannum ) — элемент 14-й группы периодической системы химических элементов (по устаревшей классификации — элемент главной подгруппы IV группы), пятого периода, с атомным номером 50. Относится к группе лёгких металлов. При нормальных условиях простое вещество олово — пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Известны четыре аллотропические модификации олова: ниже +13,2 °C устойчиво α -олово (серое олово) с кубической решёткой типа алмаза, выше +13,2 °C устойчиво β -олово (белое олово) с тетрагональной кристаллической решёткой. При высоких давлениях обнаружены также γ -олово и σ -олово.
Содержание
- 1 История
- 2 Происхождение названия
- 3 Физические свойства
- 3.1 Серое и белое олово
- 3.2 Изотопы
- 4 Химические свойства
- 4.1 Металлическое олово
- 4.2 Олово (II)
- 4.3 Олово (IV)
- 5 Нахождение в природе
- 5.1 Месторождения
- 5.2 Распространённость в природе
- 5.3 Формы нахождения
- 5.3.1 Твёрдая фаза. Минералы
- 5.3.2 Собственно минеральные формы
- 5.3.2.1 Самородные элементы, сплавы и интерметаллические соединения
- 5.3.2.2 Окисные соединения олова
- 5.3.2.2.1 Касситерит
- 5.3.2.2.2 Гидроокисные соединения
- 5.3.2.2.3 Силикаты
- 5.3.2.2.4 Шпинелиды
- 5.3.2.3 Сульфидные соединения олова
- 5.3.2.3.1 Станнин
- 5.3.3 Коллоидная форма
- 5.3.4 Формы нахождения олова в жидкой фазе
- 5.4 Промышленные типы месторождений олова
- 6 Производство
- 7 Применение
- 8 Физиологическое действие
- 9 Галерея изображений
История
Олово было известно человеку уже в IV тысячелетии до н. э. Этот металл был малодоступен и дорог, поэтому изделия из него редко встречаются среди римских и греческих древностей. Об олове есть упоминания в Библии, Четвёртой Книге Моисея. Олово является (наряду с медью) одним из компонентов оловяннистой бронзы, изобретённой в конце или середине III тысячелетия до н. э. Поскольку бронза являлась наиболее прочным из известных в то время металлов и сплавов, олово было «стратегическим металлом» в течение всего «бронзового века», более 2000 лет (очень приблизительно: XXXV—XI века до н. э.).
Чистое олово получено не ранее XII в., о нем упоминает в своих трудах Р. Бэкон. До этого олово всегда содержало переменное количество свинца. Хлорид SnCl4 впервые получил А. Либавий в 1597 г. Аллотропию олова и явление «оловянной чумы» объяснил Э. Кохен в 1899 г.
Происхождение названия
Латинское название stannum , связанное с санскритским словом, означающим «стойкий, прочный», первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67 % олова; к IV веку н. э. этим словом стали называть собственно олово.
Слово олово — общеславянское, однако в некоторых славянских языках такое же или однокоренное слово (польск. ołów , чеш. olovo , серб. олово и др.) используется для обозначения другого, внешне похожего металла — свинца. Слово олово имеет соответствия в балтийских языках (ср. лит. alavas, alvas , латыш. alva — «олово», прусск. alwis — «свинец»). Оно является суффиксальным образованием от корня ol- (ср. древневерхненемецкое elo — «жёлтый», лат. albus — «белый» и пр.), так что металл назван по цвету.
Физические свойства
Механические и технологические свойства:
модуль упругости 55 ГПа при 0 °С и 48 ГПа при 100 °С; модуль сдвига 16,8—8,1 ГПа; временное сопротивление разрыву — 20 МПа; относительное удлинение — 40 %; твёрдость по Бринеллю — 152 МПа (белое олово), 62 МПа (серое олово); температура литья — 260—300 °С.
При температуре немного выше 170 °С олово становится хрупким.
Стандартный электродный потенциал E °Sn 2+ /Sn равен −0,136 В, а E пары °Sn 4+ /Sn 2+ около 0,151 В.
Серое и белое олово
Простое вещество олово полиморфно. В обычных условиях оно существует в виде β -модификации (белое олово), устойчивой выше +13,2 °C. Белое олово — серебристо-белый, мягкий, пластичный металл, образующий кристаллы тетрагональной сингонии, пространственная группа I4/amd, параметры ячейки a = 0,58197 нм , c = 0,3175 нм , Z = 4 . Координационное окружение каждого атома олова в нём — октаэдр. Плотность β -Sn равна 7,228 г/см 3 . При сгибании прутков олова слышен характерный хруст от взаимного трения кристаллитов.
При охлаждении белое олово переходит в α -модификацию (серое олово). Серое олово образует кристаллы кубической сингонии, пространственная группа Fd3m, параметры ячейки a = 0,646 нм , Z = 8 со структурой типа алмаза. В сером олове координационный полиэдр каждого атома — тетраэдр, координационное число 4. Фазовый переход β -Sn в α -Sn сопровождается увеличением удельного объёма на 25,6 % (плотность α -Sn составляет 5,75 г/см 3 ), что приводит к рассыпанию олова в порошок. Энтальпия перехода α → β ΔH = 2,08 кДж/моль . Одна модификация переходит в другую тем быстрее, чем ниже температура окружающей среды. При −33 °C скорость превращений становится максимальной. Тем не менее белое олово можно переохладить до гелиевых температур. Белое олово превращается в серое также под действием ионизирующего излучения.
Из-за сильного различия структур двух модификаций олова разнятся и их электрофизические свойства. Так, β -Sn — металл, а α -Sn относится к числу полупроводников. Ниже 3,72 К α -Sn переходит в сверхпроводящее состояние. Атомы в кристаллической решётке белого олова находятся в электронном s 2 p 2 -состоянии. Серое олово — ковалентный кристалл со структурой алмаза и электронным sp 3 -состоянием. Белое олово слабо парамагнитно, атомная магнитная восприимчивость χ = +4,5·10 −6 (при 303 К ), при температуре плавления становится диамагнитным, χ = −5,1·10 −6 . Серое олово диамагнитно, χ = −3,7·10 −5 (при 293 К ).
Соприкосновение серого олова и белого приводит к «заражению» последнего, то есть к ускорению фазового перехода по сравнению со спонтанным процессом из-за появления зародышей новой кристаллической фазы. Совокупность этих явлений называется «оловянной чумой». Нынешнее название этому процессу в 1911 году дал Г. Коэн. Начало научного изучения этого фазового перехода было положено в 1870 году работами петербургского учёного, академика Ю. Фрицше. Много ценных наблюдений и мыслей об этом процессе высказано Д. И. Менделеевым в его «Основах химии».
Одним из средств предотвращения «оловянной чумы» является добавление в олово стабилизатора, например висмута. С другой стороны, ускоряет процесс перехода белого олова в серое при не очень низких температурах катализатор хлорстаннат аммония (NH4)2SnCl6.
«Оловянная чума» — одна из причин гибели экспедиции Скотта к Южному полюсу в 1912 году. Она осталась без горючего из-за того, что топливо просочилось из запаянных оловом баков, поражённых «оловянной чумой».
Некоторые историки указывают на «оловянную чуму» как на одно из обстоятельств поражения армии Наполеона в России в 1812 году — сильные морозы привели к превращению оловянных пуговиц на мундирах солдат в порошок.
«Оловянная чума» погубила многие коллекции оловянных солдатиков. Например, в запасниках петербургского музея Александра Суворова превратились в труху десятки фигурок — в подвале, где они хранились, лопнули зимой батареи отопления.
При высоких давлениях обнаружены ещё две модификации олова: γ -олово (переход при температуре 161 °C и давлении около 4 ГПа, при комнатной температуре и давлении 10 ГПа) и σ -олово (переход при температуре около 1000 °C и давлении выше 21 ГПа).
Изотопы
Природное олово состоит из десяти стабильных нуклидов с массовыми числами 112 (в смеси 0,96 % по массе), 114 (0,66 %), 115 (0,35 %), 116 (14,30 %), 117 (7,61 %), 118 (24,03 %), 119 (8,58 %), 120 (32,85 %), 122 (4,72 %) и 124 (5,94 %). Для некоторых из них энергетически возможен двойной бета-распад, однако экспериментально он пока (2018 г.) не наблюдался, поскольку предсказываемый период полураспада очень велик (более 10 20 лет).
Олово обладает наибольшим среди всех элементов числом стабильных изотопов, что связано с тем, что 50 (число протонов в ядрах олова) является магическим числом — оно составляет заполненную протонную оболочку в ядре и повышает тем самым энергию связи и стабильность ядра. Известны два дважды магических изотопа олова, оба они радиоактивны, так как удалены от полосы бета-стабильности: нейтронодефицитное 100 Sn ( Z = N = 50 ) и нейтроноизбыточное 132 Sn ( Z = 50 , N = 82 ).
Изотопы олова 117 Sn и 119 Sn являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.
Химические свойства
Металлическое олово
При комнатной температуре олово, подобно соседу по группе германию, устойчиво к воздействию воздуха или воды. Такая инертность объясняется образованием поверхностной плёнки оксидов. Заметное окисление олова на воздухе начинается при температурах выше 150 °C:
При нагревании олово реагирует с большинством неметаллов. При этом образуются соединения в степени окисления +4, которая более характерна для олова, чем +2. Например:
Растворяется в разбавленных кислотах (HCl, H2SO4):
Олово реагирует c концентрированной соляной кислотой. При этом белое олово (α-Sn) образует раствор хлорида олова (II), а серое (β-Sn) хлорида олова (IV):
Состав продукта реакции олова с азотной кислотой зависит от концентрации кислоты. В концентрированной азотной кислоте (60%) образуется оловянная кислота β -SnO2· n H2O (иногда её формулу записывают как H2SnO3). При этом олово ведёт себя как неметалл:
При взаимодействии с разбавленной азотной кислотой (3-5%) образуется нитрат олова (II):
Окисляется растворами щелочей до гидроксостанната (II), который в горячих расстворах склонен к диспропорцианированию:
Sn + NaOH + 3H2O → Na[Sn(OH)3] + H2↑ 2Na[Sn(OH)3] → Sn + Na2[Sn(OH)6] Sn + 2NaOH + 4H2O → Na2[Sn(OH)6] + 2H2↑
Олово (II)
Менее устойчивая степень окисления чем (IV). Вещества имеют высокую восстановительную активность и легко диспропорцианируют:
На воздухе соединения быстро окисляются кислородом, как в твердом виде, так и в растворах:
2SnO + O2 → 2SnO2 2Sn 2+ + O2 + 4H + → 2Sn 4+ + 2H2O
Сильным восстановителем является «оловянная соль» SnCl2 ⋅ 2H2O
Оксид можно получить действием аммиака на горячий раствор хлорида олова в атмосфере СO2:
Также при слабом нагревании гидроксида олова (II) Sn(OH)2 в вакууме или осторожном нагревании некоторых солей:
В растворах солей олова идёт сильный гидролиз:
При действии на раствор соли Sn(II) растворами сульфидов выпадает осадок сульфида олова (II):
Этот сульфид может быть легко окислен до сульфидного комплекса раствором полисульфида натрия, при подкислении превращающегося в осадок сульфида олова (IV):
Олово (IV)
Оксид олова(IV) (SnO2) образуется прямым окислением кислородом. При сплавлении с щелочами образует станнаты, при обработке водой образующие гидроксостаннаты:
При гидролизе растворов солей олова (IV) образуется белый осадок — так называемая α -оловянная кислота:
Свежеполученная α -оловянная кислота растворяется в кислотах и щелочах:
При хранении α -оловянная кислота стареет, теряет воду и переходит в β -оловянную кислоту, которая отличается большей химической инертностью. Данное изменение свойств связывают с уменьшением числа активных HO-Sn группировок при стоянии и замене их на более инертные мостиковые -Sn-O-Sn- связи.
Гидрид олова — станнан SnH4 — можно получить по реакции:
Этот гидрид весьма нестоек и медленно разлагается уже при температуре 0 °C.
Четырёхвалентное олово образует обширный класс оловоорганических соединений, используемых в органическом синтезе, в качестве пестицидов и др.
Нахождение в природе
Олово — редкий рассеянный элемент, по распространённости в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2⋅10 −4 до 8⋅10 −3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).
Месторождения
Мировые месторождения олова находятся в основном в Китае и Юго-Восточной Азии — Индонезии, Малайзии и Таиланде. Также есть крупные месторождения в Южной Америке (Боливии, Перу, Бразилии) и Австралии.
В России запасы оловянных руд расположены в Хабаровском крае (Солнечный район — месторождения Фестивальное и Соболиное; Верхнебуреинский район — Правоурмийское месторождение), в Чукотском автономном округе (Пыркакайские штокверки; рудник/посёлок Валькумей, Иультин — разработка месторождений закрыта в начале 1990-х годов), в Приморском крае (Кавалеровский район), в Якутии (месторождение Депутатское) и других районах.
Распространённость в природе
Распространённость в природе отражена в следующей таблице:
Геол. объект | Камен. метеориты | Дуниты и др. | Базальты и др. | Диориты и др. | Гранитоиды | Глины и др. | Вода океанов | Живое вещество(% на живой вес) | Почва | Зола растений |
---|---|---|---|---|---|---|---|---|---|---|
Содержание, вес. % | 00 1⋅10 −4 | 0 5⋅10 −5 | 0 1,5⋅10 −4 | 0000 − | 000 3⋅10 −4 | 1⋅10 −3 | 0 7⋅10 −7 | 0000 5⋅10 −5 | 1⋅10 −3 | 00 5⋅10 −4 |
В незагрязнённых поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограмм на литр, увеличиваясь в районе оловорудных месторождений, оно попадает в воды за счёт разрушения в первую очередь сульфидных минералов, неустойчивых в зоне окисления. ПДКSn = 2 мг/дм³ .
Олово является амфотерным элементом, то есть элементом, способным проявлять кислотные и основные свойства. Это свойство олова определяет и особенности его распространения в природе. Благодаря этой двойственности олово проявляет литофильные, халькофильные и сидерофильные свойства. Олово по своим свойствам проявляет близость к кварцу, вследствие чего известна тесная связь олова в виде окиси (касситерита) с кислыми гранитоидами (литофильность), часто обогащёнными оловом, вплоть до образования самостоятельных кварц-касситеритовых жил. Щелочной характер поведения олова определяется в образовании довольно разнообразных сульфидных соединений (халькофильность), вплоть до образования самородного олова и различных интерметаллических соединений, известных в ультраосновных породах (сидерофильность).
Формы нахождения
Основная форма нахождения олова в горных породах и минералах — рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах.
Твёрдая фаза. Минералы
В общем можно выделить следующие формы нахождения олова в природе:
- Рассеянная форма; конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W — с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc — с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.
- Минеральная форма: олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует железо Fe +2 : биотиты, гранаты, пироксены, магнетиты, турмалины и так далее. Эта связь обусловлена изоморфизмом, например, по схеме Sn +4 + Fe +2 → 2Fe +3 . В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес. %) (особенно в андрадитах), эпидотах (до 2,84 вес. %) и так далее.
На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2 +1 Fe +2 SnS4 или тиллита PbSnS2 и других минералов.
Собственно минеральные формы
Самородные элементы, сплавы и интерметаллические соединения
Хотя концентрации этих минералов в породах очень низки, однако распространены они в широком круге генетических образований. Среди самородных форм вместе с Sn выявлены Fe, Al, Cu, Ti, Cd и так далее, не считая уже известные самородные платиноиды, золото и серебро. Эти же элементы образуют между собой и различные сплавы: (Cu + Sn + Sb), (Pb + Sn + Sb) и другие, а также твёрдые растворы. Среди интерметаллических соединений установлены стистаит SnSb, атакит (Pd,Pt)3Sn, штумырлит Pt(Sn,Bi), звягинцевит (Pd,Pt)3(Pb,Sn), таймырит (Pd,Cu,Pt)3Sn и другие.
Приведённые формы нахождения олова и других элементов встречаются в различных геологических образованиях:
- Группа интрузивных и эффузивных магматических пород: траппы, пикриты Сибирской платформы, гипербазиты и габброиды Камчатки, кимберлиты Якутии, лампроиты Алдана и так далее; гранитоиды Приморья, Дальнего Востока, Тянь-Шаня.
- Группа метасоматически и гидротермально изменённых пород: медно-никелевые руды Сибирской платформы, золоторудные объекты Урала, Кавказа, Узбекистана и так далее.
- Группа современного рудообразования: пелагические осадки Тихого океана, продукты Большого Трещинного Толбачинского извержения, гидротермальная система Узон на Камчатке и прочие.
- Группа осадочных пород различного происхождения.
Окисные соединения олова
Наиболее известной формой является главный минерал олова — касситерит SnO2, представляющий собой соединение олова с кислородом. В минерале по данным ядерной гамма-резонансной спектроскопии присутствует Sn +4 .
Касситерит
Касситерит (от греч. kassiteros — олово) — главный рудный минерал для получения олова, химическая формула SnO2. Теоретически содержит 78,62 % Sn. Образует отдельные выделения, зерна, сплошные массивные агрегаты, в которых зёрна минерала достигают в размере 3—4 мм и даже больше. В чистом виде бесцветные кристаллы, примеси придают минералу самые различные цвета.
- Плотность 6040—7120 кг/м³ (наиболее низкая у светлоокрашенных касситеритов).
- Твёрдость по Моосу 6,5.
- Блеск — матовый, на гранях — алмазный.
- Спайность несовершенная.
- Излом раковистый.
Основные формы выделения касситерита:
- микровключения в других минералах;
- акцессорные выделения минерала в породах и рудах;
- сплошные или вкрапленные руды: игольчатые радиально-лучистые агрегаты (месторождения Приморья), коломорфные и криптокристаллические выделения и скопления (месторождения Приморья); кристаллическая форма — главная форма выделения касситерита.
В России месторождения касситерита имеются на Северо-Востоке, в Приморье, Якутии, Забайкалье; за рубежом — в Малайзии, Таиланде, Индонезии, КНР, Боливии, Нигерии и других странах.
Гидроокисные соединения
Второстепенное место занимают гидроокисные соединения олова, которые можно рассматривать как соли полиоловянных кислот. К ним можно отнести минерал сукулаит Ta2Sn2 +2 O; твёрдый раствор олова в магнетите вида Fe2SnO4 или Fe3SnO3 (Бретштейн Ю. С., 1974; Воронина Л. Б., 1979); «варламовит» — продукт окисления станнина; считается, что он представляет собой смесь аморфных и полуаморфных соединений Sn, метаоловянной кислоты, поликонденсированной фазы и гидрокасситеритовой фазы. Известны также гидратированные продукты окисления — гидромартит 3SnO·H2O; мушистонит (Cu,Zn,Fe)Sn(OH)6; гидростаннат меди CuSn(OH)6 и другие.
Силикаты
Известна многочисленная группа силикатов олова, представленная малаяитом CaSn[SiO5]; пабститом Ba(Sn, Ti)Si3O9, стоказитом Ca2Sn2Si6O18·4H2O и др. Малаяит образует даже промышленные скопления.
Шпинелиды
Из других окисных соединений известны также шпинелиды, например, минерал нигерит Sn2Fe4Al16O32 (Peterson E. U., 1986).
Сульфидные соединения олова
Включает различные соединения олова с серой. Это вторая по промышленному значению группа минеральных форм нахождения олова. Наиболее важным из них является станнин, второй по значению минерал. Кроме этого, отмечаются франкеит Pb5Sn3Sb2S14, герценбергит SnS, берндтит SnS2, тиллит PbSnS2 и кестерит Cu2ZnSnS4. Выявлены и более сложные сульфидные соединения олова со свинцом, серебром, медью, имеющие в основном минералогическое значение. Тесная связь олова с медью обусловливает частое присутствие на оловорудных месторождениях халькопирита CuFeS2 с образованием парагенезиса касситерит — халькопирит.
Станнин
Станнин (от лат. stannum — олово), оловянный колчедан, минерал из класса сульфидов с общей формулой вида Cu2FeSnS4. Она следует из формулы халькопирита путём замены одного атома Fe на Sn. Содержит 29,58 % Cu, 12,99 % Fe, 27,5 % Sn и 29,8 S, а также примеси Zn, Sb, Cd, Pb и Ag. Широко распространённый минерал в оловорудных месторождениях России. На ряде месторождений России (Приморье, Якутия) и Средней Азии (Таджикистан) он является существенным элементов сульфидных минералов и часто вместе с варламовитом составляет 10—40 % общего олова. Часто образует вкрапленность в сфалерите ZnS, халькопирите. Во многих случаях наблюдаются явления распада станнина с выделением касситерита.
Коллоидная форма
Коллоидные и олово-кремнистые соединения играют значительную роль в геохимии олова, хотя детально она не изучена. Значительное место в геологии элемента играют коломорфные соединения и продукты его кристаллических превращений в скрытокристаллические разности. Коломорфный касситерит рассматривается как форма выражения вязких гелеобразных растворов.
Независимые исследования выявили аномально высокую растворимость SnO2 в хлор-кремниевых растворах. Максимальная растворимость достигается при отношении SnO2\SiO2 = 1,5 .
Анализ свойств соединения Sn(OH)4 и близость их к соединению Si(OH)4 выявляет способность его к полимеризации с образованием в конечном счёте соединений H2Sn k O2 k +1, Sn k O2 k −1(OH)2. В обоих случаях возможно замещение группы (ОН) на анионы F и Cl.
Таким образом, полимеризация молекул Sn(OH)4 и соединение их с молекулами Si(OH)4 ведёт к образованию геля (коллоида) и появлению цепочек H m Sn2 n Si n O p , причём m ≤ 8 , или H s [SiO2 n (SnO m ) d ] (Некрасов И. Я. и др., 1973).
Имеющиеся данные говорят о том, что коллоидная форма является естественным промежуточным звеном при осаждении олова из гидротермальных растворов.
Формы нахождения олова в жидкой фазе
Наименее изученная часть геохимии олова, хотя в газово-жидких включениях установлены касситериты в виде минералов-узников (Кокорин А. М. и др., 1975). Работ по анализу конкретных оловосодержащих природных растворов нет. В основном вся информация основана на результатах экспериментальных исследований, которые говорят только о вероятных формах нахождения олова в растворах. Существенную роль в разработке методики этих исследований принадлежит академику В. Л. Барсукову.
Вся совокупность экспериментально установленных форм нахождения олова в растворах разбивается на группы:
- Ионные соединения. Эти соединения и их структура описываются с позиций классических валентных и стереохимических представлений. Выделяются подгруппы:
- Простые ионы Sn +2 и Sn +4 в основном обнаружены в магматических расплавах, а также в гидротермальных растворах, обладающих низкими значениями pH. Однако в существующих гидротермальных системах, отражаемых составом газово-жидких включений, такие условия не установлены.
- Галогениды — SnF2, SnF4 0 , SnCl4 0 . Считается, что роль хлора в переносе и отложении олова и сопутствующих металлов более значительна, чем роль фтора.
- Гидроксильные соединения. В щелочных условиях исходными являются соединения H2SnO2, H2SnO4, H2SnO3. Эти формы часто устанавливаются на основе известных минеральных форм. Часть этих форм имеет как искусственное (CaSnO3, Ca2SnO4), так и природное (FeSnO2, Fe2SnO4) происхождение. В кислых средах эти соединения ведут себя как слабые основания типа Sn(OH)2, Sn(OH)4. Считается, что одной из форм проявления подобных соединений является варламовит. Согласно экспериментальным данным Sn(OH)4 отлагается только при Т в слабокислых или нейтральных условиях при pH = 7—9 . Соединения Sn(OH)4 и Sn(OH)3 + устойчивы при pH= 7—9, тогда как Sn(OH)2 +2 и Sn(OH) +2 — при pH . Довольно часто группы (ОН) −1 замещаются на F и Cl, создавая галогенозамещённые модификации гидросоединений олова. В общем виде эти формы представлены соединениями Sn(OH)4- kF k или Sn(OH)4− kF k-nCl n. В целом соединение Sn(OH)3F устойчиво при Т = +25…+50 °C , а Sn(OH)2F2 — при Т = 200 °C .
- Сульфидные соединения. По экспериментальным данным в растворе присутствуют соединения SnS4 −4 или SnS3 −2 при pH > 9 ; SnS2O −2 ( pH = 8—9 ) и Sn(SH)4 ( pH = 6 ). Имеется упоминание о существовании соединения типа Na2SnS3, неустойчивого в кислой среде.
- Комплексные соединения олова изучены при растворении касситерита во фторированных средах. Эти соединения отличаются высокой растворимостью. Этими же свойствами обладают соединения, полученные в хлоридных растворах. В качестве основных форм комплексных соединений, известных из экспериментов, можно назвать Na2[Sn(OH)6], Na2[SnF6], Na2[Sn(OH)2F4] и пр. Эксперименты показали, что комплекс Sn(OH)4F2 −2 будет преобладать при Т = 200 °C .
- Коллоидные и олово-кремнистые соединения. Об их существовании говорит присутствие на многих месторождениях коломорфных выделений касситерита.
Промышленные типы месторождений олова
Описанные выше геохимические особенности олова находят косвенное отражение в формационной классификации оловорудных месторождений, предложенной Е. А. Радкевич с последующими дополнениями.
А. Формация оловоносных гранитов. Касситерит установлен в акцессорной части гранитов. Б. Формация редкометальных гранитов. Это граниты литионит-амазонит-альбитового типа (апограниты по А. А. Беусу). Касситерит в акцессорной части вместе колумбит-татнатлитом, микролитом и прочими. В. Формация оловоносных пегматитов. Оловянная минерализация характерна для Be-Li-, Be-Ta-, F-Li- типов. Г. Формация полевошпат-кварц-касситеритовая. Выделена Ив. Ф. Григорьевым. Это кварц-полевошпатовые жилы с касситеритом и другими минералами. Д. Формация кварц-касситеритовая. Распространена на северо-востоке России. Это жильные зоны, грейзены с кварцем, мусковитом, вольфрамитом, касситеритом и другим. Е. Формация касситерит-силикатно-сульфидная с турмалиновым и хлоритовым типами. Одна из основных продуктивных формаций Приморья России. Ж. Формация касситерит-сульфидная. Также основная оловопродуктивная формация. В ней выделяют основные типы: 1) штокверковое олово-вольфрамовое оруденение; 2) рудные тела квар-касситерит-арсенопиритового типа; 3) продуктивные кварцевые жилы сульфидно-касситерит-хлоритового типа. З. Формация оловянно-скарновая. И. Формация деревянистого олова (риолитовая формация). К. Формация основных и ультраосновных пород (по И. Я. Некрасову). Л. Формация щелочных пород Украины (по В. С. Металлиди, 1988).
Производство
В процессе производства рудоносная порода (касситерит) подвергается дроблению до размеров частиц в среднем
10 мм , в промышленных мельницах, после чего касситерит за счет своей относительно высокой плотности и массы отделяется от пустой породы вибрационно-гравитационным методом на обогатительных столах. В дополнение применяется флотационный метод обогащения/очистки руды. Таким образом удается повысить содержание олова в руде до 40—70 %. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Полученный концентрат оловянной руды выплавляется в печах. В процессе выплавки восстанавливается до свободного состояния посредством применения в восстановлении древесного угля, слои которого укладываются поочередно со слоями руды, или алюминием (цинком) в электропечах: SnO2 + C = Sn + CO2 . Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки.
Применение
- Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова — бронза (с медью). Другой известный сплав — пьютер — используется для изготовления посуды. Для этих целей расходуется около 33 % всего добываемого олова. До 60 % производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb3Sn.
- Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («поталь»).
- Искусственные радиоактивные ядерные изомеры олова 117m Sn и 119m Sn — источники гамма-излучения, являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.
- Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.
- Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
- Двуокись олова — очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.
- Смесь солей олова — «жёлтая композиция» — ранее использовалась как краситель для шерсти.
- Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении, по сравнению со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей ёмкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.
- Исследуются изолированные двумерные слои олова (станен), созданные по аналогии с графеном.
Физиологическое действие
О роли олова в живых организмах практически ничего не известно. Ежедневное поступление олова с пищей составляет 0,2—3,5 мг , при регулярном потреблении консервированной пищи — до 38 мг . В теле человека содержится примерно (1—2)·10 −4 % олова, наибольшая концентрация наблюдается в кишечнике.
Металлическое олово не токсично, что позволяет применять его в пищевой промышленности. Олово представляет опасность для человека в виде паров, различных аэрозольных частиц и пыли. При воздействии паров или пыли олова может развиться станноз — поражение лёгких. Станнан (оловянистый водород) — сильнейший яд. Также очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м 3 , ПДК олова в пищевых продуктах 200 мг/кг , в молочных продуктах и соках — 100 мг/кг . Токсическая доза олова для человека — 2 г , интоксикация организма начинается при содержании в организме 250 мг/кг .
Вредные примеси, содержащиеся в олове в обычных условиях хранения и применения, в том числе в расплаве при температуре до 600 °C, не выделяются в воздух в объёмах, превышающих предельно допустимую концентрацию (в частности, определенную по ГОСТ 12.1.005—76. Длительное (в течение 15—20 лет ) воздействие пыли олова оказывает фиброгенное воздействие на лёгкие и может вызвать заболевание работающих пневмокониозом.
Источник статьи: http://chem.ru/olovo.html
ОЛОВО — разноликий металл
Металл олово был открыт раньше железа, а его сплав с медью — самый первый, созданный людьми.
Люди отметили значимость бронзы, назвав эпоху своего развития Бронзовым веком.
Неизвестная история
История открытия олова и сплавов из него покрыта пылью времен. Никто не назовет имени первооткрывателя металла, никто не знает — кто догадался первым сплавить олово с медью. Зато известно, что еще 6000 лет назад люди пользовались изделиями из металла.
Происхождение латинского названия ученые выводят из санскритского sta — прочный.
Русское наименование относят к греческим корням. Alophoys по-гечески белый, что указывает на цвет металла.
Свойства Sn
Stannum (Sn) — латинское наименование этого гибкого, пластичного, легкоплавкого металла. Имеет № 50 в периодической таблице Менделеева.
По химическим свойствам металл подобен своим «соседям» — германию и свинцу.
В реакциях проявляет степени окисления +2, +4.
С водой или воздухом не реагирует. Причина этому — пленка оксида на поверхности металла.
Растворяется в разбавленных кислотах; с неметаллами реагирует при нагреве.
Физические свойства олова:
- плотность β-Sn 7,3 г/см3;
- плотность жидкого олова 6,98 г/см³;
- удельная электропроводность 8,69 МСм/м.
Металл обладает редким свойством: плавится при низкой температуре (232°С), а кипит при высокой (2620°С).
Свойства атома | |
---|---|
Название, символ, номер | О́лово / Stannum (Sn), 50 |
Атомная масса (молярная масса) |
118,710(7)[1] а. е. м. (г/моль) |
Электронная конфигурация | [Kr] 4d10 5s2 5p2 |
Радиус атома | 162 пм |
Химические свойства | |
Ковалентный радиус | 141 пм |
Радиус иона | (+4e) 71 (+2) 93 пм |
Электроотрицательность | 1,96 (шкала Полинга) |
Электродный потенциал | −0,136 |
Степени окисления | +4, +2 |
Энергия ионизации (первый электрон) |
708,2 (7,34) кДж/моль (эВ) |
Термодинамические свойства простого вещества | |
Плотность (при н. у.) | 7,31 г/см³ |
Температура плавления | 231,91 °C[2] |
Температура кипения | 2893 K, 2620 °C[3] |
Уд. теплота плавления | 7,19[2]; кДж/моль |
Уд. теплота испарения | 296[4] кДж/моль |
Молярная теплоёмкость | 27,11[4] Дж/(K·моль) |
Молярный объём | 16,3 см³/моль |
Кристаллическая решётка простого вещества | |
Структура решётки | тетрагональная |
Параметры решётки | a=5,831; c=3,181 Å |
Отношение c/a | 0,546 |
Температура Дебая | 170,00 K |
Прочие характеристики | |
Теплопроводность | (300 K) 66,8 Вт/(м·К) |
Номер CAS | 7440-31-5 |
Аллотропные свойства олова
Аллотропия — свойство элемента менять свою кристаллическую решетку при изменении температуры. Модификация альфа (серое олово) устойчиво при низких температурах (ниже 13 °С). Имеет кубическую решетку, по типу алмаза. Практического применения не имеет.
Бета-модификация (белое, металлическое олово), из которого делают солдатиков, им же покрывают консервные банки. Кристаллическая структура тетрагональная.
В гамма-модификацию металл переходит при температуре 161-232°С.
Маркировка металла
Промышленность выпускает металл в проволоке, чушках, прутках.
Марки олова | Форма выпуска, содержание Sn |
ОВЧ-000 | Допустимо не более 0,001% примесей |
О1пч
Примесей не более 0,1% |
|
О2 | 99,565% Sn |
О3 | Содержит 98,49% олова |
О4 | Самое «грязное» олово; допустимо содержание примесей до 3,5% |
Месторождения оловянных руд
«Олово встречается в природе редко, в жилах древних пород, почти исключительно в виде окиси SnO2, называемой оловянным камнем».
Олово относится к редким рассеянным металлам. В природе среди элементов занимает 47-е место по распространенности.
Мировые запасы оловянных руд расположены в:
Значимые месторождения российских оловянных руд сосредоточены на Дальнем Востоке (в Приморском крае, в Якутии, в Хабаровском крае). Добыча металла большей частью происходит в подземных шахтах.
Основные руды:
-
оловянный камень, касситерит — содержит до 78% металла;
Сплавы
По своей классификации оловянные сплавы делятся на припои, подшипниковые и легкоплавкие.
- Баббиты. В них добавляют свинец, медь, сурьма. Баббиты могут иметь легирующие присадки. Маркировки баббитов: Б88, Б83, Б83С.
- Бронза — сплав меди с оловом. Любая бронза содержит небольшие добавки фосфора, цинка, свинца, никеля и других элементов. Марки бронзы: Бр ОФ 6,5-0,15; Бр.ОЦ 4-3; Бр.ОЦ10-2; Бр.ОФ 10-1; Бр.ОНС 11-4-3.
- Пьютер. Сплав с висмутом, сурьмой, медью, изредка со свинцом.
- Припои. Бывают твердые и легкоплавкие. В сплав добавляют свинец и другие элементы. Марки припоев: ПОС-30, ПОС-40, ПОС-90.
Плюсы и минусы олова
- Нетоксичность, это позволяет использовать металл в пищевой промышленности, в производстве посуды.
- Достойная антикоррозионная устойчивость в агрессивных средах.
- Не реагирует с серой; поэтому используют везде, где металл «завернут» в резиновую или пластиковую изоляцию.
- Подвержен «оловянной чуме».
- Довольно высокая стоимость ограничивает широкое применение металла.
- Невысокая температура плавления (всего 232°С).
Производство изделий из олова и его сплавов
Продукция из олова была востребована с давних времен. Дети играют в оловянных солдатиков уже 4000 лет.
- Электроника с ее платами сейчас повсюду, и любые контакты соединяются припоем из олова и его сплавов. Оловянное напыление для медных проводов полезно, это защита от воздействия серы (она входит в состав резиновой изоляции).
- Оловянные сплавы баббиты обладают прекрасными антифрикционными свойствами. Ни один из механизмов (от велосипеда до могучего КРАЗа) не обходится без подшипников.
- Используют металл в типографском сплаве гарте. Полиграфическое производство невозможно без оловянных сплавов.
Простая консервная банка и гибель полярной экспедиции
Французский повар Франсуа Аппер придумал, как долго хранить пищу. Он предложил герметично закрывать продукты в банки из белой жести (это тонкий лист из железа, покрытый оловянным напылением). Теперь мы не можем представить жизни без баночки вкусных консервов.
Но те же консервные банки (вернее, «оловянная чума») способствовали гибели экспедиции Р. Скотта к Южному полюсу. Из баков, запаянных оловянным припоем, вылилось горючее. Металл перешел в альфа-модификацию и просто раскрошился на морозе.
Стоимость олова
Главная мировая площадка инвесторов в металлы находится в Лондоне. Это LME (Лондонская биржа металлов).
Цена тонны олова на LME составляла 15590,0 US$ за тонну (данные на 28.05.2020).
Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!
Источник статьи: http://themineral.ru/metally/olovo
Олово
Олово / Stannum (Sn) | |
---|---|
Атомный номер | 50 |
Внешний вид | серебристо-белый мягкий, пластичный металл |
Свойства атома | |
Атомная масса (молярная масса) |
118,71 а. е. м. (г/моль) |
Радиус атома | 162 пм |
Энергия ионизации (первый электрон) |
708,2 (7,34) кДж/моль (эВ) |
Электронная конфигурация | [Kr] 4d 10 5s 2 5p 2 |
Химические свойства | |
Ковалентный радиус | 141 пм |
Радиус иона | (+4e) 71 (+2) 93 пм |
Электроотрицательность (по Полингу) |
1,96 |
Электродный потенциал | 0 |
Степени окисления | +4, +2 |
Термодинамические свойства | |
Плотность | 7,31 г/см³ |
Удельная теплоёмкость | 0,222 Дж/(K·моль) |
Теплопроводность | 66,8 Вт/(м·K) |
Температура плавления | 505,1 K |
Теплота плавления | 7,07 кДж/моль |
Температура кипения | 2 543 K |
Теплота испарения | 296 кДж/моль |
Молярный объём | 16,3 см³/моль |
Кристаллическая решётка | |
Структура решётки | тетрагональная |
Период решётки | 5,820 Å |
Отношение c/a | n/a |
Температура Дебая | 170,00 K |
О́лово (лат. Stannum ) — химический элемент, расположенный в пятом периоде в IVА группе периодической системы Менделеева; атомный номер 50, атомная масса 118,69; белый блестящий металл, тяжёлый, мягкий и пластичный. Природное олово состоит из девяти стабильных нуклидов с массовыми числами 112 (в смеси 0,96 % по массе), 114 (0,66 %), 115 (0,35 %), 116 (14,30 %), 117 (7,61 %), 118 (24,03 %), 119 (8,58 %), 120 (32,85 %), 122 (4,72 %), и одного слабо радиоактивного 124 Sn (5,94 %). 124 Sn — β-излучатель , его период полураспада очень велик и составляет T1/2 = 10 16 -10 17 лет.
Содержание
История
Олово было известно человеку уже в 4 тысячелетии до н. э. Этот металл был малодоступен и дорог, так как изделия из него редко встречаются среди римских и греческих древностей. Об олове есть упоминания в Библии, Четвертой Книге Моисеевой.
Происхождение названия
Происхождение слова «олово» неизвестно. В Древнем Риме олово называли «белым свинцом» ( plumbum album ), в отличие от plumbum nigrum — чёрного, или обыкновенного, свинца. По-гречески белый — алофос. По-видимому, от этого слова и произошло «олово», что указывало на цвет металла. В русский язык оно попало в XI веке и означало как олово, так и свинец (в древности эти металлы плохо различали).
Латинское название stannum , связанное с санскритским словом, означающим стойкий, прочный, первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67 % олова; к IV веку этим словом стали называть олово. Происхождение английского (а также голландского и датского) tin неизвестно.
Нахождение в природе
Олово — редкий рассеянный элемент, по распространённости в земной коре олово занимает 47-е место. Содержание олова в земной коре составляет, по разным данным, от 2·10 -4 до 8·10 -3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).
Добыча
Мировые месторождения касситерита разрабатывают в Юго-Восточной Азии, в основном в Китае, Индонезии, Малайзии и Тайланде . Другие важные месторождения касситерита находятся в Южной Америке (Боливии, Перу, Бразилии) и Австралии. В России оловянные руды добываются на Дальнем Востоке и в Якутии.
Физические и химические свойства
Простое вещество олово полиморфно . В обычных условиях оно существует в виде β-модификации (белое олово), устойчивой выше 13,2 °C. Белое олово — это серебристо-белый, мягкий, пластичный металл, обладающий тетрагональной элементарной ячейкой, параметры a = 0,5831, c = 0,3181 нм. Координационное окружение каждого атома олова в нем — октаэдр .
При охлаждении, например, при морозе на улице, белое олово переходит в α-модификацию (серое олово). Серое олово имеет структуру алмаза (кубическая кристаллическая решетка с параметром а = 0,6491 нм). В сером олове координационный полиэдр каждого атома — тетраэдр, координационное число 4.
Из-за сильного различия структур двух модификаций олова разнятся и их электрофизические свойства. Так, β-Sn — металл, а α-Sn относится к числу полупроводников. Ниже 3,72 К α-Sn переходит в сверхпроводящее состояние. Стандартный электродный потенциал Sn 2+ /Sn равен −0.136 В, пары Sn 4+ /Sn 2+ 0.151 В.
При комнатной температуре олово, подобно соседу по группе германию, устойчиво к воздействию воздуха или воды. Такая инертность объясняется образованием поверхностной пленки оксидов. Заметное окисление олова на воздухе начинается при температурах выше 150°C:
При нагревании олово реагирует с большинством неметаллов . При этом образуются соединения в степени окисления +4, которая более характерна для олова, чем +2. Например:
С концентрированной соляной кислотой олово медленно реагирует:
Возможно также образование хлороловянных кислот составов HSnCl3, H2SnCl4 и других, например:
В разбавленной серной кислоте олово не растворяется, а с концентрированной реагирует очень медленно.
Состав продукта реакции олова с азотной кислотой зависит от концентрации кислоты. В концентрированной азотной кислоте образуется оловянная кислота β-SnO2·nH2O (иногда ее формулу записывают как H2SnO3). При этом олово ведет себя как неметалл :
При взаимодействии с разбавленной азотной кислотой олово проявляет свойства металла. В результате реакции образуется соль — нитрат олова (II):
При нагревании олово, подобно свинцу, может реагировать с водными растворами щелочей . При этом выделяется водород и образуется гидроксокомплекс олова (II), например:
Гидрид олова — станнан SnH4 — можно получить по реакции:
Этот гидрид весьма нестоек и медленно разлагается уже при температуре 0 °C.
Олову отвечают два оксида: SnO2 (образующийся при обезвоживании оловянных кислот) и SnO. Последний можно получить при слабом нагревании гидроксида олова (II) Sn(OH)2 в вакууме:
При сильном нагреве оксид олова (II) диспропорционирует :
При хранении на воздухе SnO постепенно окисляется:
При гидролизе растворов солей олова (IV) образуется белый осадок — так называемая α-оловянная кислота:
Свежеполученная α-оловянная кислота растворяется в кислотах и щелочах:
При хранении α-оловянная кислота стареет, теряет воду и переходит в β-оловянную кислоту, которая отличается большей химической инертностью. Данное изменение свойств связывают с уменьшением числа активных HO-Sn группировок при стоянии и замене их на более инертные мостиковые -Sn-O-Sn- связи.
При действии на раствор соли олова (II) растворами сульфидов выпадает осадок сульфида олова (II):
Этот сульфид может быть легко окислен до SnS2 раствором полисульфида аммония :
Образующийся дисульфид SnS2 растворяется в растворе сульфида аммония (NH4)2S:
Четырехвалентное олово образует обширный класс оловоорганических соединений , используемых в органическом синтезе , в качестве пестицидов и других.
Оловянная чума
При температуре ниже 13,2 градусов Цельсия белое олово переходит в серое, происходит увеличение удельного объема на 25,6 %, и металл рассыпается в серый порошок после нескольких сотен циклов. Это превращение называется «оловянной чумой».
«Оловянная чума» — одна из причин гибели экспедиции Скотта к Южному полюсу в 1912 г. Она осталась без горючего из-за того, что оно просочилось через запаянные оловом баки, поражённые «оловянной чумой».
Применение
Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники , в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова — бронза (с медью). В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Так же активно используется для создания сверхпроводящих проводов на основе соединения Nb3Sn.
Цены на металлическое олово в 2006 году составили в среднем 12-18 долл/кг, двуокись олова высокой чистоты около 25 долл/кг, монокристаллическое олово особой чистоты около 210 долл/кг.
Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.
Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
Двуокись олова — очень эффективный абразивный материал применяемый при «доводке» поверхности оптического стекла.
Олово применяется так же в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент , окисно-ртутно-оловянный элемент . Перспективно использование олова в свинцово-оловянном аккумуляторе, так например при равном напряжении с свинцовым аккумулятором, Свинцово-оловянный аккумулятор обладает в 2,5 раза большей емкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.
Искусственный радионуклид олова 119 Sn — источник нейтронного излучения в мессбауэровской спектроскопии.
Физиологическое действие
О роли олова в живых организмах практически ничего не известно. В теле человека содержится примерно (1-2)·10 -4 % олова, а его ежедневное поступление с пищей составляет 0,2-3,5 мг. Олово представляет опасность для человека в виде паров и различных аэрозольных частиц , пыли. При воздействии паров или пыли олова может развиться станноз — поражение лёгких . Очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м 3 , ПДК олова в пищевых продуктах 200 мг/кг, в молочных продуктах и соках — 100 мг/кг. Токсическая доза олова для человека — 2 г.
Ссылки
ar:قصدير ast:Estañu az:Qalay bg:Калай bs:Kalaj ca:Estany (element) ceb:Etain co:Stagnu cs:Cín cy:Tun da:Tin de:Zinn el:Κασσίτερος en:Tin eo:Stano es:Estaño et:Tina fi:Tina fr:Étain gl:Estaño (elemento) he:בדיל hr:Kositar hu:Ón hy:Անագ id:Timah io:Stano is:Tin it:Stagno ja:スズ jbo:tinci ko:주석 (원소) ku:Pîl (metal) kw:Sten la:Stannum lb:Zënn lt:Alavas lv:Alva nah:Āmochitl nds:Tinn nl:Tin (element) nn:Grunnstoffet tinn no:Tinn (grunnstoff) oc:Estanh pl:Cyna pt:Estanho qu:Chayanta sh:Kalaj simple:Tin sk:Cín sl:Kositer sr:Калај sv:Tenn tg:Қалъ th:ดีบุก tr:Kalay ug:Qeley uk:Олово uz:Qalay zh:锡 zh-min-nan:Sn (goân-sò͘) zh-yue:錫
Источник статьи: http://science.fandom.com/ru/wiki/%D0%9E%D0%BB%D0%BE%D0%B2%D0%BE
Олово: свойства, интересные факты, применение
Олово — легкий цветной металл, простое неорганическое вещество. В таблице Менделеева обозначается Sn, stannum (станнум). В переводе с латинского это значит «прочный, стойкий». Первоначально этим словом называли сплав свинца и серебра, и только значительно позже так стали именовать чистое олово. Слово «олово» имеет славянские корни и обозначает «белый».
Металл относится к рассеянным элементам, и не самым распространенным на земле. В природе он встречается в виде различных минералов. Самые важные для промышленной добычи: касситерит — оловянный камень, и станнин — оловянный колчедан. Добывают олово из руд, как правило, содержащих не более 0,1 процента этого вещества.
Свойства олова
Легкий мягкий пластичный металл серебристо-белого цвета. Имеет три структурные модификации, переходит из состояния α-олово (серое олово) в β-олово (белое олово) при температуре +13,2 °С, а в состояние γ-олово при t +161 °С. Модификации весьма сильно отличаются своими свойствами. α-олово — серый порошок, который относят к полупроводникам, β-олово («обычное олово» при комнатной температуре) — серебристый ковкий металл, γ-олово — белый хрупкий металл.
В химических реакциях олово проявляет полиморфизм, то есть кислотные и оснóвные свойства. Реактив достаточно инертный на воздухе и в воде, так как быстро покрывается прочной оксидной пленкой, защищающей его от коррозии.
Олово легко вступает в реакции с неметаллами, с трудом — с концентрированной серной и соляной кислотой; с этими кислотами в разбавленном состоянии не взаимодействует. С концентрированной и разбавленной азотной кислотой реагирует, но по-разному. В одном случае получается оловянная кислота, в другом — нитрат олова. Со щелочами вступает в реакции только при нагревании. С кислородом образует два оксида, со степенью окисления 2 и 4. Является основой целого класса оловоорганических соединений.
Воздействие на человеческий организм
Олово считается безопасным для человека, оно есть в нашем организме и каждый день мы получаем его в минимальных количествах с пищей. Его роль в функционировании организма пока не изучена.
Пары олова и его аэрозольные частицы опасны, так как при длительном и регулярном вдыхании оно может вызвать заболевания легких; ядовиты также органические соединения олова, поэтому работать с ним и его соединениями надо в средствах защиты.
Такое соединение олова как оловянистый водород, SnH4, может служить причиной тяжелых отравлений при употреблении в пищу очень старых консервов, в которых органические кислоты вступили в реакцию со слоем олова на стенках банки (жесть, из которой делают консервные банки — это тонкий лист железа, покрытый с двух сторон оловом). Отравление оловянистым водородом может быть даже смертельным. К его симптомам относятся судороги и чувство потери равновесия.
Это интересно
При понижении температуры воздуха ниже 0 °С белое олово переходит в модификацию серого олова. При этом объем вещества увеличивается почти на четверть, оловянное изделие трескается и превращается в серый порошок. Это явление стали называть «оловянной чумой».
Некоторые историки считают, что «оловянная чума» послужила одной из причин поражения армии Наполеона в России, так как превратила пуговицы на одежде французских солдат и пряжки для ремней в порошок, и тем самым оказала на армию деморализующее влияние.
А вот настоящий исторический факт: экспедиция английского полярного исследователя Роберта Скотта к Южному полюсу закончилась трагически в том числе потому, что все их топливо вылилось из запаянных оловом баков, они лишились своих мотосаней, а дойти пешком сил не хватило.
Применение
— Большая часть выплавляемого олова используется в металлургии для производства различных сплавов. Эти сплавы идут на изготовление подшипников, фольги для упаковки, белой пищевой жести, бронзы, припоев, проводов, литер типографских шрифтов.
— Олово в виде фольги (станиоль) востребовано в производстве конденсаторов, посуды, изделий искусства, органных труб.
— Используется для легирования конструкционных титановых сплавов; для нанесения антикоррозионных покрытий на изделия из железа и иных металлов (лужение).
— Сплав с цирконием обладает высокой тугоплавкостью и стойкостью к коррозии.
— Оксид олова (II) — используется в качестве абразива при обработке оптических стекол.
— Входит в состав материалов, применяющихся для изготовления аккумуляторов.
— При производстве красок «под золото», красителей для шерсти.
— Искусственные радиоизотопы олова применяются как источник γ-излучения в спектроскопических методах исследования в биологии, химии, материаловедении.
— Двухлористое олово (оловянную соль) используют в аналитической химии, в текстильной индустрии для крашения, в химпроме для органического синтеза и производства полимеров, в нефтепереработке — для обесцвечивания масел, в стекольной отрасли — для обработки стекол.
— Олово борфтористое применяется для изготовления жести, бронзы, других нужных промышленности сплавов; для лужения; ламинирования.
Источник статьи: http://pcgroup.ru/blog/olovo-svojstva-interesnye-fakty-primenenie/
Олово
серебристо-белый мягкий, пластичный металл (β-олово) или серый порошок (α-олово)
Олово — элемент главной подгруппы четвёртой группы, пятого периода периодической системы химических элементов, с атомным номером 50. Обозначается символом Sn ( Stannum ). При нормальных условиях простое вещество олово — пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Олово образует несколько аллотропных модификаций: ниже 13,2 °С устойчиво α-олово (серое олово) с кубической решёткой типа алмаза, выше 13,2 °С устойчиво β-олово (белое олово) с тетрагональной кристаллической решеткой.
История
Олово было известно человеку уже в IV тысячелетии до н. э. Этот металл был малодоступен и дорог, так как изделия из него редко встречаются среди римских и греческих древностей. Об олове есть упоминания в Библии, Четвёртой Книге Моисеевой. Олово является (наряду с медью) одним из компонентов бронзы (см. История меди и бронзы), изобретённой в конце или середине III тысячелетия до н. э.. Поскольку бронза являлась наиболее прочным из известных в то время металлов и сплавов, олово было «стратегическим металлом» в течение всего «бронзового века», более 2000 лет (очень приблизительно: 35—11 века до н. э.).
Происхождение названия
Латинское название stannum , связанное с санскритским словом, означающим «стойкий, прочный», первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67 % олова; к IV веку этим словом стали называть собственно олово.
Слово олово — общеславянское, имеющее соответствия в балтийских языках (ср. лит. alavas, alvas — «олово», прусск. alwis — «свинец»). Оно является суффиксальным образованием от корня ol- (ср. древневерхненемецкое elo — «жёлтый», лат. albus — «белый» и пр.), так что металл назван по цвету.
Нахождение в природе
Олово — редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2·10 −4 до 8·10 −3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).
Распространённость в природе
Распространённость в природе отражена в следующей таблице:
В незагрязнённых поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограмм на дм³, увеличиваясь в районе оловорудных месторождений, оно попадает в воды за счёт разрушения в первую очередь сульфидных минералов, неустойчивых в зоне окисления. ПДКSn = 2 мг/дм³.
Олово является амфотерным элементом, то есть элементом, способным проявлять кислотные и основные свойства. Это свойство олова определяет и особенности его распространения в природе. Благодаря этой двойственности олово проявляет литофильные, халькофильные и сидерофильные свойства. Олово по своим свойствам проявляет близость к кварцу, вследствие чего известна тесная связь олова виде окиси (касситерита) с кислыми гранитоидами (литофильность), часто обогащёнными оловом, вплоть до образования самостоятельных кварц-касситеритовых жил. Щелочной характер поведения олова определяется в образовании довольно разнообразных сульфидных соединений (халькофильность), вплоть до образования самородного олова и различных интерметаллических соединений, известных в ультраосновных породах (сидерофильность).
Формы нахождения
Основная форма нахождения олова в горных породах и минералах — рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах.
Твёрдая фаза. Минералы
В общем можно выделить следующие формы нахождения олова в природе:
- Рассеянная форма; конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W — с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc — с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.
- Минеральная форма: олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует железо Fe +2 : биотиты, гранаты, пироксены, магнетиты, турмалины и т. д. Эта связь обусловлена изоморфизмом, например по схеме Sn +4 + Fe +2 → 2Fe +3 . В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес.%) (особенно в андрадитах), эпидотах (до 2,84 вес.%) и т. д.
На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2 +1 Fe +2 SnS4 или тиллита PbSnS2 и других минералов.
Собственно минеральные формы
Самородные элементы, сплавы и интерметаллические соединения
Хотя концентрации этих минералов в породах очень низки, однако распространены они в широком круге генетических образований. Среди самородных форм вместе с Sn выявлены Fe, Al, Cu, Ti, Cd и т. д., не считая уже известные самородные платиноиды, золото и серебро. Эти же элементы образуют между собой и различные сплавы: (Cu + Sn + Sb), (Pb + Sn + Sb) и др., а также твёрдые растворы. Среди интерметаллических соединений установлены стистаит SnSb, атакит (Pd,Pt)3Sn, штумырлит Pt(Sn,Bi), звягинцевит (Pd,Pt)3(Pb,Sn), таймырит (Pd,Cu,Pt)3Sn и другие.
Приведённые формы нахождения олова и других элементов встречаются в различных геологических образованиях:
- Группа интрузивных и эффузивных магматических пород: траппы, пикриты Сибирской платформы, гипербазиты и габброиды Камчатки, кимберлиты Якутии, лампроитыАлдана и т. д.; гранитоиды Приморья, Дальнего Востока, Тянь-Шаня.
- Группа метасоматически и гидротермально изменённых пород: медно-никелевые руды Сибирской платформы, золоторудные объекты Урала, Кавказа, Узбекистана и т. д..
- Группа современного рудообразования: пелагические осадки Тихого океана, продукты Большого Трещинного Толбачинского извержения, гидротермальная система Узон на Камчатке и пр.
- Группа осадочных пород различного происхождения.
Окисные соединения олова
Наиболее известной формой является главный минерал олова — касситерит SnO2, представляющий собой соединение олова с кислородом. В минерале по данным ядерной гамма-резонансной спектроскопии присутствует Sn +4 .
Касситерит статья: Касситерит
Касситерит (от греч. kassiteros — олово) — главный рудный минерал для получения олова. Теоретически содержит 78,62 % Sn. Образует отдельные выделения, зерна, сплошные массивные агрегаты, в которых зерна минерала достигают в размере 3 — 4 мм и даже больше.
- Плотность 6040-7120 кг/м³ (наиболее низкая у светлоокрашенных касситеритов).
- Твердость 6½.
- Блеск — матовый, на гранях — алмазный.
- Спайность несовершенная.
- Излом раковистый.
Основные формы выделения касситерита:
- микровключения в других минералах;
- акцессорные выделения минерала в породах и рудах;
- сплошные или вкрапленные руды: игольчатые радиально-лучистые агрегаты (Приморье), коломорфные и криптокристаллические выделения и скопления (Приморье); кристаллическая форма — главная форма выделения касситерита. В России месторождения касситерита имеются на Северо-Востоке, в Приморье, Якутии, Забайкалье; за рубежом — в Малайзии, Таиланде, Индонезии, КНР, Боливии, Нигерии и др.
Гидроокисные соединения
Второстепенное место занимают гидроокисные соединения олова, которые можно рассматривать как соли полиоловянных кислот. К ним можно отнести минерал сукулаит Ta2Sn2 +2 O [8] ; твёрдый раствор олова в магнетите вида Fe2SnO4 или Fe3SnO3 (Бретштейн Ю. С., 1974;Воронина Л. Б. 1979); «варламовит» — продукт окисления станнина; считается, что он представляет собой смесь аморфных и полуаморфных соединений Sn, метаоловянной кислоты, поликонденсированной фазы и гидрокасситеритовой фазы. Известны также гидратированные продукты окисления — гидромартит 3SnOxH2O; мушистонит (Cu,Zn,Fe)Sn(OH)6; гидростаннат меди CuSn(OH)6 и др.
Силикаты
Известна многочисленная группа силикатов олова, представленная малаяитом CaSn[SiO5] [9] ; пабститом Ba(Sn, Ti)Si3O9 [8] , стоказитом Ca2Sn2Si6O18x4H2O и др. Малаяит образует даже промышленные скопления.
Шпинелиды
Из других окисных соединений известны также шпинелиды, например, минерал нигерит Sn2Fe4Al16О32 (Peterson E.U., 1986).
Сульфидные соединения олова
Включает различные соединения олова с серой. Это вторая по промышленному значению группа минеральных форм нахождения олова. Наиболее важным из них является станнин, второй по значению минерал. Кроме этого отмечаются франкеит Pb5Sn3Sb2S14, герценбергит SnS, берндтит SnS2, тиллит PbSnS2 и кестерит Cu2ZnSnS4. Выявлены и более сложные сульфидные соединения олова со свинцом, серебром, медью, имеющие в основном минералогическое значение. Тесная связь олова с медью обусловливает частое присутствие на оловорудных месторождения халькопирита CuFeS2 с образованием парагенезиса касситерит — халькопирит.
Станнин
Станнин (от лат. stannum — олово), оловянный колчедан, минерал из класса сульфидов с общей формулой вида Cu2FeSnS4. Она следует из формулы халькопирита путём замены одного атома Fe на Sn. Содержит 29,58 % Cu, 12,99 % Fe, 27,5 % Sn и 29,8 S, а также примеси Zn, Sb, Cd, Pb и Ag. Широко распространённый минерал в оловорудных месторождениях России. На ряде местрождений России (Приморье, Якутия) и Средней Азии (Таджикистан) он является существенным элементов сульфидных минералов и часто вместе с варламовитом составляет 10—40 % общего олова. Часто образует вкрапленность в сфалерите ZnS, халькопирите. Во многих случаях наблюдаются явления распада станнина с выделением касситерита.
Коллоидная форма
Коллоидные и олово-кремнистые соединения играют значительную роль в геохимии олова, хотя детально она не изучена. Значительное место в геологии элемента играют коломорфные соединения и продукты его кристаллических превращений в скрытокристаллические разности. Коломорфный касситерит рассматривается как форма выражения вязких гелеобразных растворов.
Независимые исследования выявили аномально высокую растворимость SnO2 в хлор-кремниевых растворах. Максимальная растворимость достигается при отношении .
Анализ свойств соединения Sn(OH)4 и близость их к соединению Si(OH)4 выявляет способность его к полимеризации с образованием в конечном счёте соединений H2SnkO2k+1, SnkO2k−1(OH)2. В обоих случаях возможно замещение группы (ОН) на анионы F и Cl.
Таким образом, полимеризация молекул Sn(OH)4 и соединение их с молекулами Si(OH)4 ведёт к образованию геля (коллоида) и появлению цепочек HmSn2nSinOp, причём m ≤ 8, или Hs[SiO2n(SnOm)d] (Некрасов И. Я. и др., 1973).
Имеющиеся данные говорят о том, что коллоидная форма является естественным промежуточным звеном при осаждении олова из гидротермальных растворов.
Формы нахождения олова в жидкой фазе
Наименее изученная часть геохимии олова, хотя в газово-жидких включениях установлены касситериты в виде минералов-узников (Кокорин А. М. и др., 1975). Работ по анализу конкретных оловосодержащих природных растворов нет. В основном вся информация основана на результатах экспериментальных исследований, которые говорят только о вероятных формах нахождения олова в растворах. Существенную роль в разработке методики этих исследований принадлежит академику В. Л. Барсукову
Вся совокупность экспериментально установленных форм нахождения олова в растворах разбивается на группы:
- Ионные соединения. Эти соединения и их структура описываются с позиций классических валентных и стереохимических представлений. Выделяюся подгруппы:
- Простые ионы Sn +2 и Sn +4 в основном обнаружены в магматических раславах, а также в гидротермальных растворах, обладающими низкими значениями рН. Однако в существующих гидротермальных системах, отражаемых составом газово-жидких включений, такие условия не установлены.
- Соли галлоидных кислот — SnF2, SnF4 0 , SnCl4 0 . Считается, что роль хлора в переносе и отложении олова и сопутствующих металлов более значительна, чем роль фтора.
- Гидроксильные соединения олова. В щелочных условиях исходными являются соединения H2SnO2, H2SnO4, H2SnO3. Эти формы часто устанавливаются на основе известных минеральных форм. Часть этих форм имеет как искусственное (CaSnO3, Ca2SnO4), так и природное (FeSnO2, Fe2SnO4) происхождение. В кислых средах эти соединения ведут себя как слабые основания типа Sn(OH)2, Sn(OH)4. Считается, что одной из форм проявления подобных соединений является варламовит. Согласно экспериментальным данным Sn(OH)4 отлагается только при Т + устойчивы при рН= 7 — 9, тогда как Sn(OH)2 +2 и Sn(OH) +2 — при рН -1 замещаются на F и Cl, создавая галогенозамещённые модификации гидросоединений олова. В общем виде эти формы представлены соединениями Sn(OH)4-kF k или Sn(OH)4-kFk-n n . В целом соединение Sn(OH)3F устойчиво при Т = 25 — 50 °C, а Sn(OH)2F² при Т = 200 °C.
- Сульфидные соединения. По экспериментальным данным в растворе присутствуют соединения SnS4 -4 или SnS3 -2 при рН > 9; SnS2O -2 (pH = 8 — 9) и Sn(SH)4 (pH = 6). Имеется упоминание о существовании соединения типа Na2SnS3, неустойчивого в кислой среде.
- Комплексные соединения олова изучены при растворении касситерита во фторированных средах. Эти соединения отличаются высокой растворимостью. Этими же свойствами обладают соединения, полученные в хлоридных растворах. В качестве основных форм комплексных соединений, известных из экспериментов, можно назвать Na2[Sn(OH)6], Na2[SnF6], Na2[Sn(OH)2F4] и пр. Эксперименты показали, что комплекс Sn(OH)4F2 -2 будет преобладать при Т = 200 °C.
- Коллоидные и олово-кремнистые соединения. Об их существании говорит присутствие на многих месторождениях коломорфных выделений касситерита. Смотреть выше.
Промышленные типы месторождений олова
Описанные выше геохимические особенности олова находят косвенное отражение в формационной классификации оловорудных месторождений, предложенной Е. А. Радкевич с последующими дополнениями.
А. Формация оловоносных гранитов. Касситерит установлено в акцессорной части гранитов. Б. Форрмация редкомеиальных гранитов. Это граниты литионит-амазонит-альбитового типа (апограниты по А. А. Беусу). Касситерит в акцессорной части вместе колумбит-татнатлитом, микролитом и пр. В. Формация оловоносных пегматитов. Оловянная минерализация характерна для Be-Li-, Be-Ta-, F-Li- типов. Г. Формация полевошпат-кварц-касситеритовая. Выделена Ив. Ф. Григорьевым. Это кварц-полевошпатовые жилы с касситеритом и др. минералами. Д.Формация кварц-касстеритовая. Распространена на СВ СССР. Это жильные зоны, грейзены с кварцем, мусковитом, вольфрамитом, касситеритом и др. Е.Формация касситерит-силикатно-сульфидная с турмалиновым и хлоритовым типами. Одна из основных продуктивных формаций Приморья России. Ж.Формация касситерит-сульфидная. Также основная оловопродуктивная формация. В ней выделяют основные типы:
- штокверковое олово-вольфрамовое оруденение;
- рудные тела квар-касситерит-арсенопиритового типа;
- продуктивные кварцевые жилы сульфидно-касситерит-хлоритового типа;
З.Формация оловянно-скарновая. И.Формация деревянистого олова (риолитовая формация). К.Формация основных и ультраосновных пород (по И. Я. Некрасову) Л.Формация щелочных пород Украины(по В. С. Металлиди, 1988).
Добыча
Мировые месторождения касситерита разрабатывают в Юго-Восточной Азии, в основном в Китае, Индонезии, Малайзии и Таиланде. Другие важные месторождения касситерита находятся в Южной Америке (Боливии, Перу, Бразилии) и Австралии. В России запасы оловянных руд расположены в Чукотском автономном округе (рудник/посёлок Валькумей, разработка месторождения закрыта в начале 90-х годов), в Приморском крае (Кавалеровский район), в Хабаровском крае (Солнечный район, Верхнебуреинский район (Правоурмийское месторождение)), в Якутии (месторождение Депутатское) и других районах.
Производство
В процессе производства рудоносная порода (касситерит) подвергается дроблению до размеров частиц в среднем
10 мм, в промышленных мельницах, после чего касситерит за счет своей относительно высокой плотности и массы отделяется от пустой породы вибрационно-гравитационном методом на обогатительных столах. В дополнение применяется флотационный метод обогащения/очистки руды. Полученный концентрат оловянной руды выплавляется в печах. В процессе выплавки восстанавливается до свободного состояния посредством применения в восстановления древесного угля, слои которого укладываются поочередно со слоями руды.
Физические и химические свойства
Оловянная чума
При температуре ниже 13,2 °C происходит увеличение удельного объёма чистого олова на 25,6 %, и металл образует новую модификацию, обладающую полупроводниковыми свойствами , — серое олово (α-Sn), в кристаллической решётке которого атомы располагаются менее плотно. Одна модификация переходит в другую тем быстрее, чем ниже температура окружающей среды. При −33 °C скорость превращений становится максимальной. Олово трескается и превращается в порошок. Причём соприкосновение серого олова и белого приводит к «заражению» последнего. Совокупность этих явлений называется «оловянной чумой». Начало научного изучения этого фазового перехода было положено в 1870 г. работами петербургского учёного Ю. Фрицше. Установлено, что это есть процесс аллотропического превращения белого олова в серое со структурой типа алмаза. Много ценных наблюдений и мыслей об этом процессе высказано Д. И. Менделеевым в его «Основах химии».
Белое олово — серебристо-белый, блестящий металл со специфической тетрагональной структурой и электронным s 2 p 2 -состоянием — β-фазой. Серое олово — ковалентный кристалл со структурой алмаза и электронным sp 3 -состоянием — α-фазой. Фазовые переходы олова из белого в серое и обратно сопровождаются перестройкой электронной структуры и сильным (26,6 %) объёмным эффектом. Белое олово можно переохладить до гелиевых температур (температура фазового α-β-равновесия около +13,2 °C).
В литературе встречаются указания на то, что олово, попавшее в пробирку, где когда-то находилось способное инфицировать вещество, «заражается»! Показано экспериментально, что если на несколько суток (даже при комнатной температуре) положить на стекло кристалл InSb, то после его удаления «память» о его пребывании там сохраняется. Это стекло «заражает» образец белого олова. Но не сразу, а по прошествии нескольких дней. И не со 100 % вероятностью. С повышением температуры стекла резко возрастает «инкубационный период» и падает вероятность «заражения». Выдержка затравки на стекле при 100 °C полностью устраняет возможность «заражения». Промывание пластины водой, спиртом и другими поглощающими воду веществами также «стирает» эту «память». Потеря «памяти» происходит и в том случае, если затравка находилась в контакте со стеклом в вакууме или в сухом эксикаторе. Существует ещё одно замечательное явление, характерное для «оловянной чумы», — это «память» белого олова о том, что оно когда-то прежде переходило в серое. Ю. Фрицше ещё в 1870 г. заметил, что белое олово, полученное путём нагрева из серого, при повторном охлаждении переходит в серое значительно легче, чем при первом. Образец как бы «вспоминает» свою предысторию, в связи с чем это явление, теперь широко известное, обычно называют «памятью». Коэн к одному из признаков «оловянной чумы» отнёс «порчу» олова после «выздоровления».
Одним из средств предотвращения «оловянной чумы» является добавление в олово стабилизатора, например висмута.
- «Оловянная чума»— одна из причин гибели экспедиции Скотта к Южному полюсу в 1912 г. Она осталась без горючего из-за того, что оно просочилось через запаянные оловом баки, поражённые «оловянной чумой», названной так в 1911 г. Г. Коэном.
- Отдельные историки указывают на «оловянную чуму» как на одно из обстоятельств поражения армии Наполеона в России в 1812 г. — сильные морозы привели к превращению оловянных пуговиц на мундирах солдат в порошок.
- «Оловянная чума» погубила многие ценнейшие коллекции оловянных солдатиков. Например, в запасниках питерского музея Александра Суворова превратились в труху десятки фигурок — в подвале, где они хранились, лопнули зимой батареи отопления.
Применение
- Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова — бронза (с медью). Другой известный сплав — пьютер — используется для изготовления посуды. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb3Sn.
- Цены на металлическое олово в 2006 году составили в среднем 12—18 долл/кг, двуокись олова высокой чистоты около 25 долл/кг, монокристаллическое олово особой чистоты около 210 долл/кг.
- Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.
- Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
- Двуокись олова — очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.
- Смесь солей олова — «жёлтая композиция» — ранее использовалась как краситель для шерсти.
- Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей емкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.
Изотопы
Природное олово состоит из десяти стабильных нуклидов с массовыми числами 112 (в смеси 0,96 % по массе), 114 (0,66 %), 115 (0,35 %), 116 (14,30 %), 117 (7,61 %), 118 (24,03 %), 119 (8,58 %), 120 (32,85 %), 122 (4,72 %) и 124 Sn (5,94 %).
Элемент обладает наибольшим числом стабильных изотопов, что связано с фактом, что 50 (число протонов в ядрах олова) является магическим числом — оно составлет заполненную протонную оболочку в ядре и повышает тем самым энергию связи и стабильность ядра.
Изотопы олова 117 Sn и 119 Sn являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.
Физиологическое действие
Металлическое олово не токсично, что позволяет применять его в пищевой промышленности. Вредные примеси, содержащиеся в олове в обычных условиях хранения и применения, в том числе в расплаве при температуре до 600 ºС, не выделяются в воздух рабочей зоны в объёмах, превышающих предельно допустимую концентрацию в соответствии с ГОСТ. Длительное (в течение 15—20 лет) воздействие пыли олова оказывает фиброгенное воздействие на лёгкие и может вызвать заболевание работающих пневмокониозом
Периодическая система химических элементов Менделеева
Классификация хим. элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона/
IA | IIA | IIIB | IVB | VB | VIB | VIIB | —- | VIIIB | —- | IB | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | |
Период | ||||||||||||||||||
1 | 1 H Водород |
2 He Гелий |
||||||||||||||||
2 | 3 Li Литий |
4 Be Бериллий |
5 B Бор |
6 C Углерод |
7 N Азот |
8 O Кислород |
9 F Фтор |
10 Ne Неон |
||||||||||
3 | 11 Na Натрий |
12 Mg Магний |
13 Al Алюминий |
14 Si Кремний |
15 P Фосфор |
16 S Сера |
17 Cl Хлор |
18 Ar Аргон |
||||||||||
4 | 19 K Калий |
20 Ca Кальций |
21 Sc Скандий |
22 Ti Титан |
23 V Ванадий |
24 Cr Хром |
25 Mn Марганец |
26 Fe Железо |
27 Co Кобальт |
28 Ni Никель |
29 Cu Медь |
30 Zn Цинк |
31 Ga Галлий |
32 Ge Германий |
33 As Мышьяк |
34 Se Селен |
35 Br Бром |
36 Kr Криптон |
5 | 37 Rb Рубидий |
38 Sr Стронций |
39 Y Иттрий |
40 Zr Цирконий |
41 Nb Ниобий |
42 Mo Молибден |
(43) Tc Технеций |
44 Ru Рутений |
45 Rh Родий |
46 Pd Палладий |
47 Ag Серебро |
48 Cd Кадмий |
49 In Индий |
50 Sn Олово |
51 Sb Сурьма |
52 Te Теллур |
53 I Иод |
54 Xe Ксенон |
6 | 55 Cs Цезий |
56 Ba Барий |
* | 72 Hf Гафний |
73 Ta Тантал |
74 W Вольфрам |
75 Re Рений |
76 Os Осмий |
77 Ir Иридий |
78 Pt Платина |
79 Au Золото |
80 Hg Ртуть |
81 Tl Таллий |
82 Pb Свинец |
83 Bi Висмут |
(84) Po Полоний |
(85) At Астат |
86 Rn Радон |
7 | 87 Fr Франций |
88 Ra Радий |
** | (104) Rf Резерфордий |
(105) Db Дубний |
(106) Sg Сиборгий |
(107) Bh Борий |
(108) Hs Хассий |
(109) Mt Мейтнерий |
(110) Ds Дармштадтий |
(111) Rg Рентгений |
(112) Cp Коперниций |
(113) Uut Унунтрий |
(114) Uuq Унунквадий |
(115) Uup Унунпентий |
(116) Uuh Унунгексий |
(117) Uus Унунсептий |
(118) Uuo Унуноктий |
8 | (119) Uue Унуненний |
(120) Ubn Унбинилий |
||||||||||||||||
Лантаноиды * | 57 La Лантан |
58 Ce Церий |
59 Pr Празеодим |
60 Nd Неодим |
(61) Pm Прометий |
62 Sm Самарий |
63 Eu Европий |
64 Gd Гадолиний |
65 Tb Тербий |
66 Dy Диспрозий |
67 Ho Гольмй |
68 Er Эрбий |
69 Tm Тулий |
70 Yb Иттербий |
71 Lu Лютеций |
|||
Актиноиды ** | 89 Ac Актиний |
90 Th Торий |
91 Pa Протактиний |
92 U Уран |
(93) Np Нептуний |
(94) Pu Плутоний |
(95) Am Америций |
(96) Cm Кюрий |
(97) Bk Берклий |
(98) Cf Калифорний |
(99) Es Эйнштейний |
(100) Fm Фермий |
(101) Md Менделевий |
(102) No Нобелей |
(103) Lr Лоуренсий |
Щелочные металлы | Щёлочноземельные металлы | Лантаноиды | Актиноиды | Переходные металлы |
Лёгкие металлы | Полуметаллы | Неметаллы | Галогены | Инертные газы |
198095, г.Санкт-Петербург, ул.Швецова, д.23, лит.Б, пом.7-Н, схема проезда
Источник статьи: http://himsnab-spb.ru/article/ps/sn/
Олово, свойства атома, химические и физические свойства
Олово, свойства атома, химические и физические свойства.
118,710(7) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 2
Олово — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 50. Расположен в 14-й группе (по старой классификации — главной подгруппе четвертой группы), пятом периоде периодической системы.
Физические свойства олова
Атом и молекула олова. Формула олова. Строение атома олова:
Олово (лат. Stannum) – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Sn и атомным номером 50. Расположен в 14-й группе (по старой классификации – главной подгруппе четвертой группы), пятом периоде периодической системы.
Олово – амфотерный металл. Относится к группе тяжёлых, цветных металлов .
Олово обозначается символом Sn.
Как простое вещество олово при нормальных условиях представляет собой ковкий, мягкий, пластичный, легкоплавкий, серебристо-белый, блестящий металл (белое олово, β-олово) либо серый порошок (серое олово, α-олово).
Молекула олова одноатомна.
Химическая формула олова Sn.
Электронная конфигурация атома олова 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 2 . Потенциал ионизации (первый электрон) атома олова равен 708,58 кДж/моль (7,343918(12) эВ).
Строение атома олова. Атом олова состоит из положительно заряженного ядра (+50), вокруг которого по пяти оболочкам движутся 50 электронов. При этом 46 электронов находятся на внутреннем уровне, а 4 электрона – на внешнем. Поскольку олово расположен в пятом периоде, оболочек всего пять. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлены s- и р-орбиталями. Третья и четвертая – внутренние оболочки представлены s-, р- и d-орбиталями. Пятая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома олова на 5s-орбитали находятся два спаренных электрона, на 5p-орбитали – два неспаренных электрона. В свою очередь ядро атома олова состоит из 50 протонов и 69 нейтронов. Олово относится к элементам p-семейства.
Радиус атома олова (вычисленный) составляет 145 пм.
Атомная масса атома олова составляет 118,710(7) а. е. м.
Изотопы и модификации олова:
Свойства олова (таблица): температура, плотность, давление и пр.:
100 | Общие сведения | |
101 | Название | Олово |
102 | Прежнее название | |
103 | Латинское название | Stannum |
104 | Английское название | Tin |
105 | Символ | Sn |
106 | Атомный номер (номер в таблице) | 50 |
107 | Тип | Металл |
108 | Группа | Амфотерный, тяжёлый, цветной металл |
109 | Открыт | Известно с древних времен. |
110 | Год открытия | в XXXV веке до н. э. |
111 | Внешний вид и пр. | Ковкий, мягкий, пластичный, серебристо-белый, блестящий металл (белое олово, β-олово) либо серый порошок (серое олово, α-олово) |
112 | Происхождение | Природный материал |
113 | Модификации | |
114 | Аллотропные модификации | 4 аллотропные модификации, в т.ч.:
– α-олово, серое олово, с кубической алмазной кристаллической решёткой, – β-олово, белое олово, с тетрагональной объёмно-центрированной кристаллической решёткой, – σ-олово |
115 | Температура и иные условия перехода аллотропных модификаций друг в друга | |
116 | Конденсат Бозе-Эйнштейна | |
117 | Двумерные материалы | |
118 | Содержание в атмосфере и воздухе (по массе) | 0 % |
119 | Содержание в земной коре (по массе) | 0,00022 % |
120 | Содержание в морях и океанах (по массе) | 1,0·10 -9 % |
121 | Содержание во Вселенной и космосе (по массе) | 4,0·10 -7 % |
122 | Содержание в Солнце (по массе) | 9,0·10 -7 % |
123 | Содержание в метеоритах (по массе) | 0,00012 % |
124 | Содержание в организме человека (по массе) | 0,00002 % |
200 | Свойства атома | |
201 | Атомная масса (молярная масса) | 118,710(7) а. е. м. (г/моль) |
202 | Электронная конфигурация | 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 2 |
203 | Электронная оболочка | K2 L8 M18 N18 O4 P0 Q0 R0 |
204 | Радиус атома (вычисленный) | 145 пм |
205 | Эмпирический радиус атома* | 145 пм |
206 | Ковалентный радиус* | 139 пм |
207 | Радиус иона (кристаллический) | Sn 4+
(в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле) |
208 | Радиус Ван-дер-Ваальса | 217 пм |
209 | Электроны, Протоны, Нейтроны | 50 электронов, 50 протонов, 69 нейтронов |
210 | Семейство (блок) | элемент p-семейства |
211 | Период в периодической таблице | 5 |
212 | Группа в периодической таблице | 14-ая группа (по старой классификации – главная подгруппа 4-ой группы) |
213 | Эмиссионный спектр излучения | |
300 | Химические свойства | |
301 | Степени окисления | -4, -3, -2, -1, 0, +1, +2, +3, +4 |
302 | Валентность | II, IV |
303 | Электроотрицательность | 1,96 (шкала Полинга) |
304 | Энергия ионизации (первый электрон) | 708,58 кДж/моль (7,343918(12) эВ) |
305 | Электродный потенциал | Sn 2+ + 2e – → Sn, E o = -0,136 В,
Sn 4+ + 2e – → Sn 2+ , E o = +0,151 В, Sn 4+ + 4e – → Sn, E o = +0,01 В |
306 | Энергия сродства атома к электрону | 107,2984(3) кДж/моль (1,112070(2) эВ) |
400 | Физические свойства | |
401 | Плотность* | 7,265 г/см 3 (при 20 °C и иных стандартных условиях , состояние вещества – твердое тело) – β-олово (белое олово),
5,769 г/см 3 (при 20 °C и иных стандартных условиях , состояние вещества – твердое тело) – α-олово (серое олово), 6,99 г/см 3 (при температуре плавления 231,93 °C и иных стандартных условиях , состояние вещества – жидкость) |
402 | Температура плавления* | 231,93 °C (505,08 K, 449,47 °F) |
403 | Температура кипения* | 2602 °C (2875 K, 4716 °F) |
404 | Температура сублимации | |
405 | Температура разложения | |
406 | Температура самовоспламенения смеси газа с воздухом | |
407 | Удельная теплота плавления (энтальпия плавления ΔHпл)* | 7,03 кДж/моль – β-олово (белое олово) |
408 | Удельная теплота испарения (энтальпия кипения ΔHкип) | 296,1 кДж/моль – β-олово (белое олово) |
409 | Удельная теплоемкость при постоянном давлении | |
410 | Молярная теплоёмкость | 27,112 Дж/(K·моль) – β-олово (белое олово) |
411 | Молярный объём | 16,239398 см³/моль |
412 | Теплопроводность | 66,8 Вт/(м·К) (при стандартных условиях ),
66,8 Вт/(м·К) (при 300 K) |
500 | Кристаллическая решётка | |
511 | Кристаллическая решётка #1 | β-олово (белое олово) |
512 | Структура решётки | Тетрагональная объёмно-центрированная |
513 | Параметры решётки | a = 5,8197 Å, c = 3,175 Å |
514 | Отношение c/a | 0,546 |
515 | Температура Дебая | 170 K |
516 | Название пространственной группы симметрии | I41/amd |
517 | Номер пространственной группы симметрии | 141 |
521 | Кристаллическая решётка #2 | α-олово (серое олово) |
522 | Структура решётки | Кубическая алмазная |
523 | Параметры решётки | a = 6,46 Å |
524 | Отношение c/a | |
525 | Температура Дебая | |
526 | Название пространственной группы симметрии | Fd_ 3m |
527 | Номер пространственной группы симметрии | 225 |
900 | Дополнительные сведения | |
901 | Номер CAS | 7440-31-5 |
205* Эмпирический радиус атома олова согласно [1] и [3] составляет 140 пм и 162 пм соответственно.
206* Ковалентный радиус олова согласно [1] и [3] составляет 139±4 пм и 141 пм соответственно.
401* Плотность белого олова согласно [4] составляет 7,29 г/см 3 (при 20 °C и иных стандартных условиях , состояние вещества – твердое тело) и 6,98 г/см 3 (при температуре плавления 232 °C и иных стандартных условиях , состояние вещества – жидкость). Плотность серого олова согласно [4] составляет 5,85 г/см 3 (при 14 °C и иных стандартных условиях , состояние вещества – твердое тело).
402* Температура плавления олова согласно [3] и [4] составляет 231,91 °С (505,06 K, 449,44 °F) и 231,9 °С (505,05 K, 449,42 °F) соответственно.
403* Температура кипения олова согласно [3] и [4] составляет 2619,85 °C (2893 K, 4747,73 °F) и 2620 °С (2893,15 K, 4748 °F) соответственно.
407* Удельная теплота плавления (энтальпия плавления ΔHпл) белого олова согласно [4] составляет 7,2 кДж/моль.
Источник статьи: http://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/olovo-svoystva-atoma-himicheskie-i-fizicheskie-svoystva/
Температура плавления и маркировка олова
Раньше олово как чистый металл не был знаком человечеству. Оно использовалось в сплаве со свинцом, соединение которых образовывало оловянистую бронзу. Сейчас этот легкий металл применяется в разных сферах промышленности. Температура плавления олова позволяет эффективно использовать его для изготовления припоев.
Паяльник и олово
Краткое описание
Олово — химический элемент, который в таблице Менделеева находится в группе легких металлов под номером 50. Это пластичный, ковкий материал, с естественным металлическим блеском.
Структура и характеристики
- b-Sn — стандартное белое. Имеет объемноцентрированную тетрагональную кристаллическую решетку.
- a-Sn — серое олово. Имеет гранецентрированную кубическую кристаллическую решетку.
Чистый металл может рассыпаться в порошок при низких температурах, но этот процесс замедляется при наличии примесей в составе.
История открытия и изучения
По археологическим находкам ученые смогли установить, что с оловом человечество познакомилось еще в 4 тысячелетии до н. э. Письменные напоминания об этом металле можно встретить в Четвертой Книге Моисея, Библии.
Сначала олово было малодоступным. Его можно было встретить только у правителей, полководцев, богатых граждан, купцов. Он был главным компонентом оловянистой бронзы, которая появилась в середине 3 тысячелетия до н. э. Тогда бронза считалась самым прочным сплавом. Компоненты для его изготовления имели исключительную ценность в период «бронзового века».
Отдельно от примесей, чистый металл было получено в 12 веке. Его упоминания есть в работах Р. Бэкона.
Получение из руды и месторождения
Процесс получения сплава зависит от того, в какой форме его нашли. Олово в виде руды не имеет значительных отличий от производства других цветных металлов. Процесс состоит из трех этапов:
- Добыча, обработка расходного сырья (руды).
- Восстановительная плавка для получения чернового металла.
- Рафинирование подготовленного сырья допустимыми способами.
Разработка россыпных месторождений осуществляется с помощью промышленных песковых насосов.
Промышленное получение
Существует две технологии промышленного получения олова:
- Восстановительная плавка. Для проведения этой технологии применяется 2 типа аппаратов — отражательные печи, шахтное оборудование для плавки.
- Рафинирование. Бывает термическим, электролитическим.
Марки
- О1, О1пч. Это обозначение указывает на то, что в сплаве содержится 99,9% Sn. Изготавливается в виде проволоки, прутков, чушек.
- ОВЧ-000. Сплав высокой чистоты. Содержание Sn в составе — 99,99%. Изготавливается в виде прутков, чушек.
- О2. Содержание Sn в составе — 99,565%. Производится в виде прутков, проволоки, чушек.
- О3. Сплав содержит 98,49% Sn. Изготавливается чушками.
- О4. Самое «грязное» соединение. Содержит большое количество сторонних примесей. Их примерное количество — 3,5% от общей массы.
Маркировка указывается на готовых изделиях с помощью штампа.
Свойства
Чтобы понять, где лучше применять олово, нужно знать характеристики, свойства химического элемента.
Химические
Олово — химический элемент периодической таблицы Менделеева с атомным номером 50. Оно относится к группе легких металлов. Химические свойства:
- Электроотрицательность — 1,8.
- Температура плавления — 231°C.
- Температура кипения — 2630°C.
- Плотность — 7300 кг/м³ .
- Атомная масса химического элемента — 118,71.
- Теплоемкость — 0,226 кДж/(кг·°С).
Олово инертно к воздействию воды, воздуха, если в помещении комнатная температура. На поверхности заготовки, которая находится на открытом воздухе, образуется оксидная пленка, защищающая металл от окисления, образования ржавчины.
Физические
- Плотность — 7,31 г/см3 .
- Металлический блеск — есть.
- Прозрачность —нет.
- Цвет — серо-белый.
- Спайность — нет.
- Прочность — ковкий металл.
- Твердость — до 2 по шкале Мооса.
- Высокая электропроводность.
Белое олово является парамагнетиком, а серое диамагнетиком.
Сковорода из белого олова
Оптические
- Умеренная анизотропия.
- Не плеохроирует.
- Тип металла — изотропный.
- Олово не флуоресцентный материал.
Кристаллографические
- Тетрагональная сингония.
- Пространственная группа металла — I 41/amd .
- Точечная группа — 4/mmm .
- ПОС-18. Содержит несколько основных компонентов — олово (18%), свинец (около 81), сурьму (2,5%). Применяется при лужении металлов. Подходит для создания швов при низких стандартах. Температура плавления — 270°C.
- ПОС-30. Содержит олово (28%), свинец (около 70%), сурьму (2%). Применяется для пайки меди, стали, латуни. Температура плавления — 270°C.
- ПОС-50. Содержит олово (50%), свинец (около 50%), сурьму (0,8%). Применяется для спаивания радиодеталей, получения высокого качества шва. Температура плавления — 230°С.
- ПОС-90. Содержит олово (90%), свинец (9–10%), сурьму (0,15%).
Отдельные виды оловянных припоев — ПОС-40, ПОС-60. Применяются для пайки радиодеталей.
Пайка радиодеталей
Сферы применения
- Защита металлических поверхностей. Применяется в виде специального покрытия. Оно не выделяет вредных веществ при эксплуатации, устойчиво к образованию ржавчины.
- Изготовление белой жести (второе название луженое железо). Используется для производства дымовых труб, тары для хранения пищевых продуктов, подшипников.
- Производство сантехники, запорной арматуры, фурнитуры.
- Изготовление сплавов.
- Производство припоев.
- Изготовление ограждений, лестничных перил.
- Производство скульптур, скамеек, вешалок, светильников для украшения интерьера.
Больше 50% добытого металла применяется для получения белой жести, предметов из стали с дополнительным защитным покрытием.
Преимущества и недостатки
- Пластичность. Из олова изготавливают сложные изделия для украшения интерьера.
- Инертность. Металл применяется в пищевой промышленности для изготовления посуды, тар для хранения продуктов.
- Низкая температура плавления. Олово используется для нанесения на металлические детали в виде защитного покрытия.
- Низкий показатель прочности. Сплав не подходит для изготовления деталей, которые будут подвергаться большим нагрузкам.
- Редкость. Из-за этого увеличивается цена на материал.
Сахарница из олова
Сплавы
Отдельная группа — припои с разными характеристиками.
Олово — редкий металл. Благодаря своим химическим, физическим особенностям оно применяется во многих сферах деятельности. Наиболее популярное направление — изготовление припоев для пайки других металлов, сплавов.
Источник статьи: http://metalloy.ru/metally/olovo
ОЛОВО
Энциклопедия Кольера. — Открытое общество . 2000 .
Полезное
Смотреть что такое “ОЛОВО” в других словарях:
олово — олово, а … Русский орфографический словарь
ОЛОВО — (символ Sn), переходный элемент IV группы периодической таблицы, известный с древнейших времен. Основная руда КАССИТЕРИТ. Мягкое, пластичное, устойчивое к коррозии, олово используется в качестве защитного покрытия для железа, стали, меди и других … Научно-технический энциклопедический словарь
ОЛОВО — (лат. Stannum) Sn, химический элемент IV группы периодической системы, атомный номер 50, атомная масса 118,710. Серебристо белый металл, мягкий и пластичный; tпл 231,91 .С. Полиморфно; т. н. белое олово (или ? Sn) с плотностью 7,228 г/см³… … Большой Энциклопедический словарь
ОЛОВО — ср. крушец (металл) пепельно серебристый, белее свинца, весьма мягкий, легкоплавкий, легкий весом, более прочих удобный для паянья и для отливки простых мелких вешиц; | ·стар. свинец, откуда пословица: Слово олово, веско. Лить олово, святочное… … Толковый словарь Даля
ОЛОВО — хим. элемент, символ Sn (лат. Stannum), ат. и. 50, ат. м. 118,71; серебристо белый металл, мягкий и пластичный; существует в двух аллотропных модификациях белое олово ß Sn (плотность 7228 кг/м3), которое при температуре ниже +13,2°С переходит в… … Большая политехническая энциклопедия
ОЛОВО — (Stannum), Sn, химический элемент IV группы периодической системы, атомный номер 50, атомная масса 118,710; металл, tпл 231,9 шC. Олово компонент бронзы, латуни, баббита и других сплавов, материал защитных покрытий на металлах, из него… … Современная энциклопедия
олово — касситерит, пинкзальц Словарь русских синонимов. олово сущ., кол во синонимов: 6 • касситерит (3) • … Словарь синонимов
Олово — Олово, металл, добавляемый в медь для получения бронзы (Чис 31:22; Иез 22:18,20). Финикийцы ввозили О. через см. Фарсис, предположит. при этом подразумевается О., к рое доставлялось на Ближний Восток с Британских островов через финик. форпосты в… … Библейская энциклопедия Брокгауза
Олово — Sn (лат. Stannum * a. tin; н. Zinn; ф. etain; и. estaсo), хим. элемент IV группы периодич. системы Менделеева, ат.н. 50, ат. м. 118, 69. B природе встречаются 10 стабильных изотопов 112Sn (0,96%), 114Sn (0,66%), 115Sn (0,35%), 116Sn… … Геологическая энциклопедия
ОЛОВО — ОЛОВО, олова, мн. нет, ср. Мягкий, ковкий серебристо белый металл. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ОЛОВО — ОЛОВО, а, ср. Химический элемент, мягкий ковкий серебристо белый металл. | прил. оловянный, ая, ое. О. солдатик (игрушечная фигурка солдата). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
Источник статьи: http://dic.academic.ru/dic.nsf/enc_colier/3166/%D0%9E%D0%9B%D0%9E%D0%92%D0%9E
олово
Энциклопедический словарь . 2009 .
Полезное
Смотреть что такое “олово” в других словарях:
олово — олово, а … Русский орфографический словарь
ОЛОВО — (символ Sn), переходный элемент IV группы периодической таблицы, известный с древнейших времен. Основная руда КАССИТЕРИТ. Мягкое, пластичное, устойчивое к коррозии, олово используется в качестве защитного покрытия для железа, стали, меди и других … Научно-технический энциклопедический словарь
ОЛОВО — (лат. Stannum) Sn, химический элемент IV группы периодической системы, атомный номер 50, атомная масса 118,710. Серебристо белый металл, мягкий и пластичный; tпл 231,91 .С. Полиморфно; т. н. белое олово (или ? Sn) с плотностью 7,228 г/см³… … Большой Энциклопедический словарь
ОЛОВО — ср. крушец (металл) пепельно серебристый, белее свинца, весьма мягкий, легкоплавкий, легкий весом, более прочих удобный для паянья и для отливки простых мелких вешиц; | ·стар. свинец, откуда пословица: Слово олово, веско. Лить олово, святочное… … Толковый словарь Даля
ОЛОВО — хим. элемент, символ Sn (лат. Stannum), ат. и. 50, ат. м. 118,71; серебристо белый металл, мягкий и пластичный; существует в двух аллотропных модификациях белое олово ß Sn (плотность 7228 кг/м3), которое при температуре ниже +13,2°С переходит в… … Большая политехническая энциклопедия
ОЛОВО — (Stannum), Sn, химический элемент IV группы периодической системы, атомный номер 50, атомная масса 118,710; металл, tпл 231,9 шC. Олово компонент бронзы, латуни, баббита и других сплавов, материал защитных покрытий на металлах, из него… … Современная энциклопедия
олово — касситерит, пинкзальц Словарь русских синонимов. олово сущ., кол во синонимов: 6 • касситерит (3) • … Словарь синонимов
Олово — Олово, металл, добавляемый в медь для получения бронзы (Чис 31:22; Иез 22:18,20). Финикийцы ввозили О. через см. Фарсис, предположит. при этом подразумевается О., к рое доставлялось на Ближний Восток с Британских островов через финик. форпосты в… … Библейская энциклопедия Брокгауза
Олово — Sn (лат. Stannum * a. tin; н. Zinn; ф. etain; и. estaсo), хим. элемент IV группы периодич. системы Менделеева, ат.н. 50, ат. м. 118, 69. B природе встречаются 10 стабильных изотопов 112Sn (0,96%), 114Sn (0,66%), 115Sn (0,35%), 116Sn… … Геологическая энциклопедия
ОЛОВО — ОЛОВО, олова, мн. нет, ср. Мягкий, ковкий серебристо белый металл. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ОЛОВО — ОЛОВО, а, ср. Химический элемент, мягкий ковкий серебристо белый металл. | прил. оловянный, ая, ое. О. солдатик (игрушечная фигурка солдата). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
Источник статьи: http://dic.academic.ru/dic.nsf/es/788/%D0%BE%D0%BB%D0%BE%D0%B2%D0%BE
ПЕРИОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА
Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории. Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная. Тогда мы и подумать не могли, что таблица Менделеева бесспорно является одним из величайших научных открытий, который является фундаментом нашего современного знания о химии.
Периодическая система химических элементов Д. И. Менделеева
На первый взгляд, ее идея выглядит обманчиво просто: организовать химические элементы в порядке возрастания веса их атомов. Причем в большинстве случаев оказывается, что химические и физические свойства каждого элемента сходны с предыдущим ему в таблице элементом. Эта закономерность проявляется для всех элементов, кроме нескольких самых первых, просто потому что они не имеют перед собой элементов, сходных с ними по атомному весу. Именно благодаря открытию такого свойства мы можем поместить линейную последовательность элементов в таблицу, очень напоминающую настенный календарь, и таким образом объединить огромное количество видов химических элементов в четкой и связной форме. Разумеется, сегодня мы пользуемся понятием атомного числа (количества протонов) для того, чтобы упорядочить систему элементов. Это помогло решить так называемую техническую проблему «пары перестановок», однако не привело к кардинальному изменению вида периодической таблицы.
В периодической таблице Менделеева все элементы упорядочены с учетом их атомного числа, электронной конфигурации и повторяющихся химических свойств. Ряды в таблице называются периодами, а столбцы группами. В первой таблице, датируемой 1869 годом, содержалось всего 60 элементов, теперь же таблицу пришлось увеличить, чтобы поместить 118 элементов, известных нам сегодня.
Периодическая система Менделеева систематизирует не только элементы, но и самые разнообразные их свойства. Химику часто бывает достаточно иметь перед глазами Периодическую таблицу для того, чтобы правильно ответить на множество вопросов (не только экзаменационных, но и научных).
The YouTube ID of 1M7iKKVnPJE is invalid.
Периодический закон
Существуют две формулировки периодического закона химических элементов: классическая и современная.
Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.
Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).
Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.
Группы и периоды Периодической системы
Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгрупп. Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов. Химические свойства элементов главных и побочных подгрупп значительно различаются.
Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров. В периодической системе имеются семь периодов: первый, второй и третий периоды называют малыми, в них содержится соответственно 2, 8 и 8 элементов; остальные периоды называют большими: в четвёртом и пятом периодах расположены по 18 элементов, в шестом — 32, а в седьмом (пока незавершенном) — 31 элемент. Каждый период, кроме первого, начинается щелочным металлом, а заканчивается благородным газом.
Физический смысл порядкового номера химического элемента: число протонов в атомном ядре и число электронов, вращающихся вокруг атомного ядра, равны порядковому номеру элемента.
Свойства таблицы Менделеева
Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.
Свойства элементов в подгруппах закономерно изменяются сверху вниз:
- усиливаются металлические свойства и ослабевают неметаллические;
- возрастает атомный радиус;
- возрастает сила образованных элементом оснований и бескислородных кислот;
- электроотрицательность падает.
Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).
Оксиды состава R2O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства. Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.
Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH4, RH3, RH2, RH.
Соединения RH4 имеют нейтральный характер; RH3 — слабоосновный; RH2 — слабокислый; RH — сильнокислый характер.
Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.
В пределах периода с увеличением порядкового номера элемента:
- электроотрицательность возрастает;
- металлические свойства убывают, неметаллические возрастают;
- атомный радиус падает.
Элементы таблицы Менделеева
Щелочные и щелочноземельные элементы
К ним относятся элементы из первой и второй группы периодической таблицы. Щелочные металлы из первой группы — мягкие металлы, серебристого цвета, хорошо режутся ножом. Все они обладают одним-единственным электроном на внешней оболочке и прекрасно вступают в реакцию. Щелочноземельные металлы из второй группы также имеют серебристый оттенок. На внешнем уровне помещено по два электрона, и, соответственно, эти металлы менее охотно взаимодействуют с другими элементами. По сравнению со щелочными металлами, щелочноземельные металлы плавятся и кипят при более высоких температурах.
Щелочные металлы | Щелочноземельные металлы |
Литий Li 3 | Бериллий Be 4 |
Натрий Na 11 | Магний Mg 12 |
Калий K 19 | Кальций Ca 20 |
Рубидий Rb 37 | Стронций Sr 38 |
Цезий Cs 55 | Барий Ba 56 |
Франций Fr 87 | Радий Ra 88 |
Лантаниды (редкоземельные элементы) и актиниды
Лантаниды — это группа элементов, изначально обнаруженных в редко встречающихся минералах; отсюда их название «редкоземельные» элементы. Впоследствии выяснилось, что данные элементы не столь редки, как думали вначале, и поэтому редкоземельным элементам было присвоено название лантаниды. Лантаниды и актиниды занимают два блока, которые расположены под основной таблицей элементов. Обе группы включают в себя металлы; все лантаниды (за исключением прометия) нерадиоактивны; актиниды, напротив, радиоактивны.
Лантаниды | Актиниды |
Лантан La 57 | Актиний Ac 89 |
Церий Ce 58 | Торий Th 90 |
Празеодимий Pr 59 | Протактиний Pa 91 |
Неодимий Nd 60 | Уран U 92 |
Прометий Pm 61 | Нептуний Np 93 |
Самарий Sm 62 | Плутоний Pu 94 |
Европий Eu 63 | Америций Am 95 |
Гадолиний Gd 64 | Кюрий Cm 96 |
Тербий Tb 65 | Берклий Bk 97 |
Диспрозий Dy 66 | Калифорний Cf 98 |
Гольмий Ho 67 | Эйнштейний Es 99 |
Эрбий Er 68 | Фермий Fm 100 |
Тулий Tm 69 | Менделевий Md 101 |
Иттербий Yb 70 | Нобелий No 102 |
Галогены и благородные газы
Галогены и благородные газы объединены в группы 17 и 18 периодической таблицы. Галогены представляют собой неметаллические элементы, все они имеют семь электронов во внешней оболочке. В благородных газахвсе электроны находятся во внешней оболочке, таким образом с трудом участвуют в образовании соединений. Эти газы называют «благородными, потому что они редко вступают в реакцию с прочими элементами; т. е. ссылаются на представителей благородной касты, которые традиционно сторонились других людей в обществе.
Галогены | Благородные газы |
Фтор F 9 | Гелий He 2 |
Хлор Cl 17 | Неон Ne 10 |
Бром Br 35 | Аргон Ar 18 |
Йод I 53 | Криптон Kr 36 |
Астат At 85 | Ксенон Xe 54 |
— | Радон Rn 86 |
Переходные металлы
Переходные металлы занимают группы 3—12 в периодической таблице. Большинство из них плотные, твердые, с хорошей электро- и теплопроводностью. Их валентные электроны (при помощи которых они соединяются с другими элементами) находятся в нескольких электронных оболочках.
Переходные металлы |
Скандий Sc 21 |
Титан Ti 22 |
Ванадий V 23 |
Хром Cr 24 |
Марганец Mn 25 |
Железо Fe 26 |
Кобальт Co 27 |
Никель Ni 28 |
Медь Cu 29 |
Цинк Zn 30 |
Иттрий Y 39 |
Цирконий Zr 40 |
Ниобий Nb 41 |
Молибден Mo 42 |
Технеций Tc 43 |
Рутений Ru 44 |
Родий Rh 45 |
Палладий Pd 46 |
Серебро Ag 47 |
Кадмий Cd 48 |
Лютеций Lu 71 |
Гафний Hf 72 |
Тантал Ta 73 |
Вольфрам W 74 |
Рений Re 75 |
Осмий Os 76 |
Иридий Ir 77 |
Платина Pt 78 |
Золото Au 79 |
Ртуть Hg 80 |
Лоуренсий Lr 103 |
Резерфордий Rf 104 |
Дубний Db 105 |
Сиборгий Sg 106 |
Борий Bh 107 |
Хассий Hs 108 |
Мейтнерий Mt 109 |
Дармштадтий Ds 110 |
Рентгений Rg 111 |
Коперниций Cn 112 |
Металлоиды
Металлоиды занимают группы 13—16 периодической таблицы. Такие металлоиды, как бор, германий и кремний, являются полупроводниками и используются для изготовления компьютерных чипов и плат.
Металлоиды |
Бор B 5 |
Кремний Si 14 |
Германий Ge 32 |
Мышьяк As 33 |
Сурьма Sb 51 |
Теллур Te 52 |
Полоний Po 84 |
Постпереходными металлами
Элементы, называемые постпереходными металлами, относятся к группам 13—15 периодической таблицы. В отличие от металлов, они не имеют блеска, а имеют матовую окраску. В сравнении с переходными металлами постпереходные металлы более мягкие, имеют более низкую температуру плавления и кипения, более высокую электроотрицательность. Их валентные электроны, с помощью которых они присоединяют другие элементы, располагаются только на внешней электронной оболочке. Элементы группы постпереходных металлов имеют гораздо более высокую температуру кипения, чем металлоиды.
Постпереходные металлы |
Алюминий Al 13 |
Галлий Ga 31 |
Индий In 49 |
Олово Sn 50 |
Таллий Tl 81 |
Свинец Pb 82 |
Висмут Bi 83 |
Неметаллы
Из всех элементов, классифицируемых как неметаллы, водород относится к 1-й группе периодической таблицы, а остальные — к группам 13—18. Неметаллы не являются хорошими проводниками тепла и электричества. Обычно при комнатной температуре они пребывают в газообразном (водород или кислород) или твердом состоянии (углерод).
Неметаллы |
Водород H 1 |
Углерод C 6 |
Азот N 7 |
Кислород O 8 |
Фосфор P 15 |
Сера S 16 |
Селен Se 34 |
Флеровий Fl 114 |
Унунсептий Uus 117 |
А теперь закрепите полученные знания, посмотрев видео про таблицу Менделеева и не только.
Отлично, первый шаг на пути к знаниям сделан. Теперь вы более-менее ориентируетесь в таблице Менделеева и это вам очень даже пригодится, ведь Периодическая система Менделеева является фундаментом, на котором стоит эта удивительная наука.
Источник статьи: http://himi4ka.ru/tablica-mendeleeva